Influence of oxide scales on the corrosion behaviors of B510L hot-rolled steel strips

Cheng Man , Chao-fang Dong , Hui-bin Xue , Kui Xiao , Xiao-gang Li , Hui-bin Qi

International Journal of Minerals, Metallurgy, and Materials ›› 2016, Vol. 23 ›› Issue (7) : 769 -778.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2016, Vol. 23 ›› Issue (7) : 769 -778. DOI: 10.1007/s12613-016-1291-3
Article

Influence of oxide scales on the corrosion behaviors of B510L hot-rolled steel strips

Author information +
History +
PDF

Abstract

The influence of oxide scales on the corrosion behaviors of B510L hot-rolled steel strips was investigated in this study. Focused ion beams and scanning electron microscopy were used to observe the morphologies of oxide scales on the surface and cross sections of the hot-rolled steel. Raman spectroscopy and X-ray diffraction were used for the phase analysis of the oxide scales and corrosion products. The corrosion potential and impedance were measured by anodic polarization and electrochemical impedance spectroscopy. According to the results, oxide scales on the hot-rolled strips mainly comprise iron and iron oxides. The correlation between mass gain and test time follows a power exponential rule in the damp-heat test. The corrosion products are found to be mainly composed of γ-FeOOH, Fe3O4, α-FeOOH, and γ-Fe2O3. The contents of the corrosion products are different on the surfaces of the steels with and without oxide scales. The steel with oxide scales is found to show a higher corrosion resistance and lower corrosion rate.

Keywords

strip steel / hot rolling / focused ion beams / Raman spectroscopy / oxide scale / corrosion

Cite this article

Download citation ▾
Cheng Man, Chao-fang Dong, Hui-bin Xue, Kui Xiao, Xiao-gang Li, Hui-bin Qi. Influence of oxide scales on the corrosion behaviors of B510L hot-rolled steel strips. International Journal of Minerals, Metallurgy, and Materials, 2016, 23(7): 769-778 DOI:10.1007/s12613-016-1291-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Soltis J. Passivity breakdown, pit initiation and propagation of pits in metallic materials: review. Corros. Sci., 2015, 90, 5.

[2]

Chen R. Y., Yuen W. Y. D. Review of the high-temperature oxidation of iron and carbon steels in air or oxygen. Oxid. Met., 2003, 5(5/6): 433.

[3]

Chen R. Y., Yuen W. Y. D. Oxide-scale structures formed on commercial hot-rolled steel strip and their formation mechanisms. Oxid. Met., 2001, 56(1/2): 89.

[4]

Chen R. Y., Yuen W. Y. D. A study of the scale structure of hot-rolled steel strip by simulated coiling and cooling. Oxid. Met., 2000, 53(5/6): 539.

[5]

Sun W. H., Tieu A. K., Jiang Z. Y., Zhu H. T., Lu C. Oxide scales growth of low-carbon steel at high temperatures. J. Mater. Process. Technol., 2004, 155-156, 1300.

[6]

Mougin J., Rosman N., Lucazeau G., Galerie A. In situ Raman monitoring of chromium oxide scale growth for stress determination. J. Raman Spectrosc., 2001, 32, 739.

[7]

Perez F. J., Martinez L., Hierro M. P., Gómez C., Portela A. L., Pucci G. N., Duday D., Lecomte-Beckers J., Greday Y. Corrosion behaviour of different hot rolled steels. Corros. Sci., 2006, 48(2): 472.

[8]

Macák J., Sajdl P., Kucera P., Novotný R., Vošta J. In situ electrochemical impedance and noise measurements of corroding stainless steel in high temperature water. Electrochim. Acta, 2006, 51, 3566.

[9]

Dong C. F., Xue H. B., Li X. G., Qi H. B., Cheng Y. F. Electrochemical corrosion behavior of hot-rolled steel under oxide scale in chloride solution. Electrochim. Acta, 2009, 54, 4223.

[10]

Yu X. L., Jiang Z. Y., Zhao J. W., Wei D. B., Zhou C. L., Huang Q. X. Microstructure and microtexture evolutions of deformed oxide layers on a hot-rolled microalloyed steel. Corros. Sci, 2015, 90, 140.

[11]

Birnie J., Craggs C., Gardiner D. J., Graves P. R. Ex situ and in situ determination of stress distributions in chromium oxide films by raman microscopy. Corros. Sci, 1992, 33(1): 1.

[12]

Calvarin G., Huntz A., Hugot Le Goff A., Joiret S., Bernard M. Oxide scale stress determination by Raman spectroscopy application to the NiCr/Cr2O3 system and influence of yttrium. Scripta Mater., 1998, 38(11): 1649.

[13]

Chattopadhyay A., Bandyopadhyay N., Das A. K., Panigrahi M. K. Oxide scale characterization of hot rolled coils by Raman spectroscopy technique. Scripta Mater., 2005, 52, 211.

[14]

Singh Raman R. K., Gleeson B., Young D. J. Laser Raman spectroscopy: a technique for rapid characterisation of oxide scale layers. Mater. Sci. Technol., 1998, 14(5): 373.

[15]

Merkel S., Goncharov A. F., Mao H. K., Gillet P., Hemley R. J. Raman spectroscopy of iron to 152 gigapascals: implications for Earth’s inner core. Science, 2000, 288(5741): 1626.

[16]

Gong D. G., Fang F., Jiang J. Q., Li Y. H., Hu X. J., Chen S. H. Laser raman spectroscopy analysis on oxide scale of high carbon steel wire. Phys. Test. Chem. Anal., 2008, 44, 609.

[17]

M. Stratmann and H. Streckel. On the atmospheric corrosion of metals which are covered with thin electrolyte layers: I. Verification of the experimental technique. Corros. Sci., 30(1990), No. 6/7, p. 681.

[18]

Li D. P., Zhang L., Yang J. W., Lu M. X., Ding J. H., Liu M. L. Effect of H2S concentration on the corrosion behavior of pipeline steel under the coexistence of H2S and CO2. Int. J. Miner. Metall. Mater., 2014, 21(4): 388.

[19]

Xu L. N., Zhu J. Y., Lu M. X., Zhang L., Chang W. Electrochemical impedance spectroscopy study on the corrosion of the weld zone of 3Cr steel welded joints in CO2 environments. Int. J. Miner. Metall. Mater., 2015, 22(5): 500.

AI Summary AI Mindmap
PDF

124

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/