Phase transformation behavior of titanium during carbothermic reduction of titanomagnetite ironsand

Yi-ran Liu , Jian-liang Zhang , Zheng-jian Liu , Xiang-dong Xing

International Journal of Minerals, Metallurgy, and Materials ›› 2016, Vol. 23 ›› Issue (7) : 760 -768.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2016, Vol. 23 ›› Issue (7) : 760 -768. DOI: 10.1007/s12613-016-1290-4
Article

Phase transformation behavior of titanium during carbothermic reduction of titanomagnetite ironsand

Author information +
History +
PDF

Abstract

The reduction of titanomagnetite (TTM) ironsand, which contains 11.41wt% TiO2 and 55.63wt% total Fe, by graphite was performed using a thermogravimetric analysis system under an argon gas atmosphere at 1423–1623 K. The behavior and effects of titanium in TTM ironsand during the reduction process were investigated by means of thermogravimetric analysis, X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. During the reduction procedure, the titanium concentrated in the slag phase, where the phase transformation followed this sequence: FeO + FeTiO3 → Fe2TiO4 → FeTiO3 → FeTi2O5 → TiO2. The calculated results for the reduction kinetics showed that the carbothermic reduction was controlled by the diffusion of ions through the product layer. Furthermore, the apparent activation energy was 170.35 kJ·mol−1.

Keywords

titanomagnetite / carbothermic reduction / apparent activation energy / phase transformation

Cite this article

Download citation ▾
Yi-ran Liu, Jian-liang Zhang, Zheng-jian Liu, Xiang-dong Xing. Phase transformation behavior of titanium during carbothermic reduction of titanomagnetite ironsand. International Journal of Minerals, Metallurgy, and Materials, 2016, 23(7): 760-768 DOI:10.1007/s12613-016-1290-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhang Y. B., Li G. H., Jiang T., Guo Y. F., Huang Z. C. Reduction behavior of tin-bearing iron concentrate pellets using diverse coals as reducers. Int. J. Miner. Process., 2012, 110-111, 109.

[2]

Tang J., Chu M. S., Li F., Tang Y. T., Liu Z. G., Xue X. X. Reduction mechanism of high-chromium vanadium–titanium magnetite pellets by H2–CO–CO2 gas mixtures. Int. J. Miner. Metall. Mater., 2015, 22(6): 562.

[3]

Gou H. P., Zhang G. H., Chou K. C. Phase evolution during the carbothermic reduction process of ilmenite concentrate. Metall. Mater. Trans. B, 2015, 46(1): 48.

[4]

Merk R., Pickles C. A. Reduction of ilmenite by carbon monoxide. Can. Metall. Q., 1988, 27(3): 179.

[5]

Hu T., Lv X. W., Bai C. G., Lun Z. G., Qiu G. B. Reduction behavior of Panzhihua titanomagnetite concentrates with coal. Metall. Mater. Trans. B, 2013, 44(2): 252.

[6]

Longbottom R. J., Monaghan B. J., Nightingale S. A., Mathieson J. G. Strength and bonding in reduced ironsand?coal compacts. Ironmaking Steelmaking, 2013, 40(5): 381.

[7]

McAdam G. D. Instability of titanium-rich iron sands in reducing gases. Ironmaking Steelmaking, 1974 138.

[8]

Park E., Ostrovski O. Reduction of titania-ferrous ore by carbon monoxide. ISIJ Int., 2003, 43(9): 1316.

[9]

Wright J. B. Iron-titanium oxides in some New Zealand ironsands. N. Z. J. Geol. Geophys., 1964, 7(3): 424.

[10]

Longbottom R. J., Monaghan B. J., Mathieson J. G. Development of a bonding phase within titanomagnetite-coal compacts. ISIJ Int., 2013, 53(7): 1152.

[11]

Park E., Ostrovski O. Reduction of titania-ferrous ore by hydrogen. ISIJ Int., 2004, 44(6): 999.

[12]

Longbottom R. J., Ostrovski O., Zhang J. Q., Young D. Stability of cementite formed from hematite and titanomagnetite ore. Metall. Mater. Trans. B, 2007, 38(2): 175.

[13]

Zhao Y., Shadman F. Reduction of ilmenite with hydrogen. Ind. Eng. Chem. Res., 1991, 30(9): 2080.

[14]

Yao Y. K. The kinetics of reduction of hematite by carbon. Metall. Trans., 1971, 2(5): 1439.

AI Summary AI Mindmap
PDF

102

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/