Kinetic approach to the study of froth flotation applied to a lepidolite ore

Nathália Vieceli , Fernando O. Durão , Carlos Guimarães , Carlos A. Nogueira , Manuel F. C. Pereira , Fernanda Margarido

International Journal of Minerals, Metallurgy, and Materials ›› 2016, Vol. 23 ›› Issue (7) : 731 -742.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2016, Vol. 23 ›› Issue (7) : 731 -742. DOI: 10.1007/s12613-016-1287-z
Article

Kinetic approach to the study of froth flotation applied to a lepidolite ore

Author information +
History +
PDF

Abstract

The number of published studies related to the optimization of lithium extraction from low-grade ores has increased as the demand for lithium has grown. However, no study related to the kinetics of the concentration stage of lithium-containing minerals by froth flotation has yet been reported. To establish a factorial design of batch flotation experiments, we conducted a set of kinetic tests to determine the most selective alternative collector, define a range of pulp pH values, and estimate a near-optimum flotation time. Both collectors (Aeromine 3000C and Armeen 12D) provided the required flotation selectivity, although this selectivity was lost in the case of pulp pH values outside the range between 2 and 4. Cumulative mineral recovery curves were used to adjust a classical kinetic model that was modified with a non-negative parameter representing a delay time. The computation of the near-optimum flotation time as the maximizer of a separation efficiency (SE) function must be performed with caution. We instead propose to define the near-optimum flotation time as the time interval required to achieve 95%–99% of the maximum value of the SE function.

Keywords

lepidolite / lithium ore treatment / froth flotation / kinetic analysis

Cite this article

Download citation ▾
Nathália Vieceli, Fernando O. Durão, Carlos Guimarães, Carlos A. Nogueira, Manuel F. C. Pereira, Fernanda Margarido. Kinetic approach to the study of froth flotation applied to a lepidolite ore. International Journal of Minerals, Metallurgy, and Materials, 2016, 23(7): 731-742 DOI:10.1007/s12613-016-1287-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hernáinz F., Calero M. Froth flotation: kinetic models based on chemical analogy. Chem. Eng. Process., 2001, 40, 269.

[2]

Bahena J. L. R., Valdivieso A. L., Manlapig E. V., Franzidis J. P. Optimization of flotation circuits by modelling and simulations. Proceedings of 2006 China-Mexico Workshop on Minerals Particle Technology, 2006

[3]

Hien-Dinh T. T., Luong V. T., Gieré R., Tran T. Extraction of lithium from lepidolite via iron sulphide roasting and water leaching. Hydrometallurgy, 2015, 153, 154.

[4]

Zhao Z. W., Si X. F., Liu X. H., He L. H., Liang X. X. Li extraction from high Mg/Li ratio brine with LiFePO4/FePO4 as electrode materials. Hydrometallurgy, 2013, 133, 75.

[5]

Meshram P., Pandey B. D., Mankhand T. R. Extraction of lithium from primary and secondary sources by pre-treatment, leaching and separation: A comprehensive review. Hydrometallurgy, 2014, 150, 192.

[6]

Kunasz I. Lithium. Industrial and Mineral Rocks, 2006, Littleton, Society of Mining, Metallurgy, and Exploration, Inc., 599.

[7]

Amarante M. M. A., Noronha J. A., Botelho de Sousa A. M., Machado Leite M. R. Processamento tecnológico dos minérios de lítio: Alguns casos de estudo em Portugal. Valorização de Pegmatitos Litiníferos, 2011 43.

[8]

Moura A., Velho J. L. Recursos Geológicos de Portugal, 2011, Coimbra, Palimage

[9]

Ramos J. M. F. Aplitopegmatitos com mineralizações de metais raros de Seixo Amarelo-Gonçalo. O recurso Geológico. Ciências Geológicas: Ensino, Investigação e sua História, 2010, Lisboa, Associação Portuguesa de Geólogos, 121.

[10]

Lima A., Vieira R., Martins T., Noronha F. As fontes de lítio em Portugal. Portugal Mineral, 2011, Porto, Associação Nacional da Indústria Extractiva e Transformadora - ANIET, 60.

[11]

Kelebek S., Nanthakumar B. Characterization of stockpile oxidation of pentlandite and pyrrhotite through kinetic analysis of their flotation. Int. J. Miner. Process., 2007, 84(1-4): 69.

[12]

Lynch A. J., Johnson N. W., Manlaping E. V., Thome C. G. Mineral and Coal Flotation Circuits: Their Simulation and Control, 1981, New York, Elsevier Science Ltd

[13]

Yuan X. M., Palsson B. I., Forssberg K. S. E. Statistical interpretation of flotation kinetics for a complex sulphide ore. Miner. Eng., 1996, 9(4): 429.

[14]

Klimpel R. R. Selection of Chemical Reagents for Flotation, 1980, Littleton, Society of Mining Engineers

[15]

Kelsall D. F. Application of probability in the assessment of flotation systems. Trans. Inst. Min. Metall., 1961, 70(4): 191.

[16]

Jowett A. Resolution of flotation recovery curves by a differential plot method. Trans. Inst. Min. Metall., 1974, 85, C263.

[17]

Polat M., Chandler S. First-order flotation kinetics models and methods for estimation of the true distribution of flotation rate constants. Int. J. Miner. Process., 2000, 58, 145.

[18]

Mular A. L., Bhappu R. B. Mineral Processing Plant Design, 1980, New York, Society of Mining Engineers (SME) of The American Institute of Mining, Metallurgical and Petroleum Engineers Inc.

[19]

Cytec Industries Inc., Mining Chemicals Handbook, Cytec Industries Inc., New Jersey, 2002.

[20]

Chaves A. P., Filho L. S. L., Braga P. F. A. Flotação. Tratamento de Minérios, 2010, Rio de Janeiro, Centro de Tecnologia Mineral-CETEM, 465.

[21]

Wills T. N., Munn B. A. Will’s Mineral Processing Technology, 2006, Oxford, Elsevier Science & Technology Book

[22]

Concha F., Almendra E. R. Settling velocities of particulate systems: 1. Settling velocities of individual spherical particles. Int. J. Miner. Process., 1979, 5(4): 349.

[23]

Concha F., Almendra E. R. Settling velocities of particulate systems: 2. Settling velocities of suspensions of spherical particles. Int. J. Miner. Process., 1979, 6(1): 31.

[24]

Bulatovic S. M. Handbook of Flotation Reagents: Chemistry, Theory and Practice, 2015, Amsterdam, Oxford, Elsevier

[25]

Agar G. E. The optimization of flotation circuit design from laboratory rate data. XVth International Mineral Processing Congress, 1985 100.

[26]

R. Samková, Recovering lithium mica from the waste after mining Sn-W ores through the use of flotation, GeoSci. Eng., LV(2009), No. 1, p. 33.

[27]

Liu Y. L., Liu J. The flotation process of lepidolite in Jiangxi Province in China. Adv. Mater. Res., 2014, 1033-1034, 1309.

[28]

Nogueira C. G. A. Extracção de Lítio de Recursos Nacionais, Technical Report, 1991, Lisboa, LNETI

[29]

Bulatovic S. M. Handbook of Flotation Reagents: Chemistry, Theory and Practice, 2007, Amsterdam, Elsevier Science

[30]

Kelly E. G., Spottiswood D. J. Introduction to Mineral Processing, 1982, New York, John Wiley & Sons

[31]

Fuerstenau D. W., Raghavan S. Gaudin Memorial A. M., Fuerstenau M. C. Some aspects of the thermodynamics of flotation. Flotation, 1976, New York, AIME

[32]

Ramachandra S. R. Surface of Chemistry of Froth Flotation, 2004, New York, Springer Science + Business Media

[33]

Kennard T. G., Rambo A. I. Occurrence of rubidium, gallium and thallium in lepidolite from Pala, California. Am. Mineral., 1933, 18(10): 454.

[34]

Butterman W. C., Reese R. G. Mineral Commodity Profiles: Rubidium, 2003

[35]

Royal Society of Chemistry. Chemistry in its Element: Rubidium. [2015-05-25]_http://wwwrscorg/chemistryworld/podcast/interactive_periodic_table_transcripts/rubidiumasp.

[36]

Singer S. F., Singer S. S. Industrial Ceramics, 1963, Netherlands, Springer Science Business Media

[37]

Luong V. T., Kang D. J., An J. W., Kim M. J., Tran T. Factors affecting the extraction of lithium from lepidolite. Hydrometallurgy, 2013, 134-135, 54.

[38]

Luong V. T., Kang D. J., An D. W., Dao D. A., Kim M. J., Tran T. Iron sulphate roasting for extraction of lithium from lepidolite. Hydrometallurgy, 2014, 141, 8.

[39]

Yan Q. X., Li X. H., Wang Z. X., Wang J. X., Guo H. J., Hu Q. Y., Peng W. J., Wu X. F. Extraction of lithium from lepidolite using chlorination roasting-water leaching process. Tran. Nonferrous Met. Soc. China, 2012, 22(7): 1753.

[40]

Yan Q. X., Li X. H., Wang Z. X., Wu X. F., Guo H. J., Hu Q. Y., Peng W. J., Wang J. X. Extraction of valuable metals from lepidolite. Hydrometallurgy, 2012, 117-118, 116.

AI Summary AI Mindmap
PDF

247

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/