Graphene-reinforced aluminum matrix composites prepared by spark plasma sintering

Wen-ming Tian , Song-mei Li , Bo Wang , Xin Chen , Jian-hua Liu , Mei Yu

International Journal of Minerals, Metallurgy, and Materials ›› 2016, Vol. 23 ›› Issue (6) : 723 -729.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2016, Vol. 23 ›› Issue (6) : 723 -729. DOI: 10.1007/s12613-016-1286-0
Article

Graphene-reinforced aluminum matrix composites prepared by spark plasma sintering

Author information +
History +
PDF

Abstract

Graphene-reinforced 7055 aluminum alloy composites with different contents of graphene were prepared by spark plasma sintering (SPS). The structure and mechanical properties of the composites were investigated. Testing results show that the hardness, compressive strength, and yield strength of the composites are improved with the addition of 1wt% graphene. A clean, strong interface is formed between the metal matrix and graphene via metallurgical bonding on atomic scale. Harmful aluminum carbide (Al4C3) is not formed during SPS processing. Further addition of graphene (above 1wt%) results in the deterioration in mechanical properties of the composites. The agglomeration of graphene plates is exacerbated with increasing graphene content, which is the main reason for this deterioration.

Keywords

metal matrix / composites / spark plasma sintering / aluminum / graphene / mechanical properties

Cite this article

Download citation ▾
Wen-ming Tian, Song-mei Li, Bo Wang, Xin Chen, Jian-hua Liu, Mei Yu. Graphene-reinforced aluminum matrix composites prepared by spark plasma sintering. International Journal of Minerals, Metallurgy, and Materials, 2016, 23(6): 723-729 DOI:10.1007/s12613-016-1286-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Rafiee M.A., Rafiee J., Wang Z., Song H.H., Yu Z.Z., Koratkar N. Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano, 2009, 3(12): 3884.

[2]

Tang Y.X., Yang X.M., Wang R.R., Li M.X. Enhancement of the mechanical properties of graphene-copper composites with graphene-nickel hybrids. Mater. Sci. Eng. A, 2014, 599, 247.

[3]

Balandin A.A., Ghosh S., Bao W.Z., Calizo I., Teweldebrhan D., Miao F., Lau C.N. Superior thermal conductivity of single-layer graphene. Nano Lett., 2008, 8(3): 902.

[4]

Bartolucci S.F., Paras J., Rafiee M.A., Rafiee J., Lee S., Kapoor D., Koratkar N. Graphene-aluminum nanocomposites. Mater. Sci. Eng. A, 2011, 528(27): 7933.

[5]

Pérez-Bustamante R., Bolaños-Morales D., Bonilla-Martínez J., Estrada-Guel I., Martínez-Sánchez R. Microstructural and hardness behavior of graphene-nanoplatelets/aluminum composites synthesized by mechanical alloying. J. Alloys Compd., 2014, 615(1): S578.

[6]

Li J.L., Xiong Y.C., Wang X.D., Yan S.J., Yang C., He W.W., Chen J.Z., Wang S.Q., Zhang X.Y., Dai S.L. Microstructure and tensile properties of bulk nanostructured aluminum/graphene composites prepared via cryomilling. Mater. Sci. Eng. A, 2015, 626, 400.

[7]

Rashad M., Pan F.S., Tang A.T., Asif M., Aamir M. Synergetic effect of graphene nanoplatelets (GNPs) and multi-walled carbon nanotube (MW-CNTs) on mechanical properties of pure magnesium. J. Alloys Compd., 2014, 603, 111.

[8]

Jeon C., Jeong Y., Seo J., Tien H.N., Hong S., Yum Y., Hur S., Lee K. Material properties of graphene/aluminum metal matrix composites fabricated by friction stir processing. Int. J. Precis. Eng. Manuf., 2014, 15(6): 1235.

[9]

Lee B., Koo M.Y., Jin S.H., Kim K.T., Hong S.H. Simultaneous strengthening and toughening of reduced graphene oxide/alumina composites fabricated by molecular-level mixing process. Carbon, 2014, 78, 212.

[10]

Dutkiewicz J., Ozga P., Maziarz W., Pstrus J., Kania B., Bobrowski P., Stolarska J. Microstructure and properties of bulk copper matrix composites strengthened with various kinds of graphene nanoplatelets. Mater. Sci. Eng. A, 2015, 628, 124.

[11]

Chang Y., Huang D., Jia C., Cui Z., Wang C., Liang D. Influence of plasma on the densification mechanism of SPS under multi-field effect. Int. J. Miner. Metall. Mater., 2014, 21(9): 906.

[12]

Nie J.H., Jia C.C., Shi N., Zhang Y.F., Li Y., Jia X. Aluminum matrix composites reinforced by molybdenum-coated carbon nanotubes. Int. J. Miner. Metall. Mater., 2011, 18(6): 695.

[13]

Bastwros M., Kim G., Zhu C., Zhang K., Wang S., Tang X., Wang X. Effect of ball milling on graphene reinforced Al6061 composite fabricated by semi-solid sintering. Compos. Part B, 2014, 60, 111.

[14]

Fattahi M., Gholami A.R., Eynalvandpour A., Ahmadi E., Fattahi Y., Akhavan S. Improved microstructure and mechanical properties in gas tungsten arc welded aluminum joints by using graphene nanosheets/aluminum composite filler wires. Micron, 2014, 64, 20.

[15]

Chen L.Y., Konishi H., Fehrenbacher A., Ma C., Xu J.Q., Choi H., Xu H.F., Pfefferkorn F.E., Li X.C. Novel nanoprocessing route for bulk graphene nanoplatelets reinforced metal matrix nanocomposites. Scripta Mater., 2012, 67(1): 29.

[16]

Li Y., Liu W., Ortalan V., Li W.F., Zhang Z., Vogt R., Browning N.D., Lavernia E.J., Schoenung J.M. HRTEM and EELS study of aluminum nitride in nanostructured Al 5083/B4C processed via cryomilling. Acta Mater., 2010, 58(5): 1732.

[17]

Kumar H.G.P., Xavior M.A. Graphene reinforced metal matrix composite (GRMMC): a review. Procedia Eng., 2014, 97, 1033.

[18]

Jiang X., Galano M., Audebert F. Extrusion textures in Al, 6061 alloy and 6061/SiCp nanocomposites. Mater. Charact., 2014, 88, 111.

[19]

Knowles A.J., Jiang X., Galano M., Audebert F. Microstructure and mechanical properties of 6061 Al alloy based composites with SiC nanoparticles. J. Alloys Compd., 2014, 615(1): S401.

[20]

Umasankar V., Anthony Xavior M., Karthikeyan S. Experimental evaluation of the influence of processing parameters on the mechanical properties of SiC particle reinforced AA6061 aluminium alloy matrix composite by powder processing. J. Alloys Compd., 2014, 582, 380.

[21]

Abhik R., Umasankar V., Xavior M.A. Evaluation of properties for Al-SiC reinforced metal matrix composite for brake pads. Procedia Eng., 2014, 97, 941.

[22]

Gao P., Jia C.C., Cao W.B., Wang C.C., Liang D., Xu G.L. Dielectric properties of spark plasma sintered AlN/SiC composite ceramics. Int. J. Miner. Metall. Mater., 2014, 21(6): 589.

[23]

Liu L.H., Li F., Chen N., Qiu H.M., Cao G.H., Li Y. Influence of sintering temperature on the thermoelectric properties of Ba8Ga16Si30 clathrate treated by spark plasma sintering. Int. J. Miner. Metall. Mater., 2015, 22(1): 78.

[24]

Atrian A., Majzoobi G.H., Enayati M.H., Bakhtiari H. Mechanical and microstructural characterization of Al7075/SiC nanocomposites fabricated by dynamic compaction. Int. J. Miner. Metall. Mater., 2014, 21(3): 295.

[25]

Saheb N. Spark plasma and microwave sintering of Al6061 and Al2124 alloys. Int. J. Miner. Metall. Mater., 2013, 20(2): 152.

AI Summary AI Mindmap
PDF

123

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/