Effect of sintering on the relative density of Cr-coated diamond/Cu composites prepared by spark plasma sintering

Wei Cui , Hui Xu , Jian-hao Chen , Shu-bin Ren , Xin-bo He , Xuan-hui Qu

International Journal of Minerals, Metallurgy, and Materials ›› 2016, Vol. 23 ›› Issue (6) : 716 -722.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2016, Vol. 23 ›› Issue (6) : 716 -722. DOI: 10.1007/s12613-016-1285-1
Article

Effect of sintering on the relative density of Cr-coated diamond/Cu composites prepared by spark plasma sintering

Author information +
History +
PDF

Abstract

Cr-coated diamond/Cu composites were prepared by spark plasma sintering. The effects of sintering pressure, sintering temperature, sintering duration, and Cu powder particle size on the relative density and thermal conductivity of the composites were investigated in this paper. The influence of these parameters on the properties and microstructures of the composites was also discussed. The results show that the relative density of Cr-coated diamond/Cu reaches ~100% when the composite is gradually compressed to 30 MPa during the heating process. The densification temperature increases from 880 to 915°C when the diamond content is increased from 45vol% to 60vol%. The densification temperature does not increase further when the content reaches 65vol%. Cu powder particles in larger size are beneficial for increasing the relative density of the composite.

Keywords

metal matrix composites / copper / diamond / relative density / spark plasma sintering

Cite this article

Download citation ▾
Wei Cui, Hui Xu, Jian-hao Chen, Shu-bin Ren, Xin-bo He, Xuan-hui Qu. Effect of sintering on the relative density of Cr-coated diamond/Cu composites prepared by spark plasma sintering. International Journal of Minerals, Metallurgy, and Materials, 2016, 23(6): 716-722 DOI:10.1007/s12613-016-1285-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Weber L., Tavangar R. On the influence of active element content on the thermal conductivity and thermal expansion of Cu–X (X =Cr, B) diamond composites. Scripta Mater., 2007, 57(11): 988.

[2]

Li J.W., Zhang H.L., Zhang Y., Che Z.F., Wang X.T. Microstructure and thermal conductivity of Cu/diamond composites with Ti-coated diamond particles produced by gas pressure infiltration. J. Alloys Compd., 2015, 647, 941.

[3]

Raza K., Khalid F.A. Optimization of sintering parameters for diamondcopper composites in conventional sintering and their thermal conductivity. J. Alloys Compd., 2014, 615, 111.

[4]

Schubert Th., Trindade B., Weiβgärber T., Kieback B. Interfacial design of Cu-based composites prepared by powder metallurgy for heat sink applications. Mater. Sci. Eng. A, 2008, 475(1-2): 39.

[5]

Hamid Z.A., Moustafa S.F., Morsy F.A., Khalifa N.A.A., Mouez F.A. Fabrication and characterization copper/diamond composites for heat sink application using powder metallurgy. Nat. Sci., 2011, 3(11): 936.

[6]

Zhang C., Wang R.C., Cai Z.Y., Peng C.Q., Wang N.G. Low-temperature densification of diamond/Cu composite prepared from dual-layer coated diamond particles. J. Mater. Sci., 2015, 26(1): 185.

[7]

Ren S.B., Shen X.Y., Guo C.Y., Liu N., Zang J.B., He X.B., Qu X.H. Effect of coating on the microstructure and thermal conductivities of diamond–Cu composites prepared by powder metallurgy. Compos. Sci. Technol., 2011, 71(13): 1550.

[8]

Shen X.Y., He X.B., Ren S.B., Zhang H.M., Qu X.H. Effect of molybdenum as interfacial element on the thermal conductivity of diamond/Cu composites. J. Alloys Compd., 2012, 529, 134.

[9]

Abyzov A.M., Kidalov S.V., Shakhov F.M. High thermal conductivity composites consisting of diamond filler with tungsten coating and copper (silver) matrix. J. Mater. Sci., 2011, 46(5): 1424.

[10]

Abyzov A.M., Kidalov S.V., Shakhov F.M. High thermal conductivity composite of diamond particles with tungsten coating in a copper matrix for heat sink application. Appl. Therm. Eng., 2012, 48, 72.

[11]

Sinha V., Spowart J.E. Influence of interfacial carbide layer characteristics on thermal properties of copper–diamond composites. J. Mater. Sci., 2013, 48(3): 1330.

[12]

Zain-ul-abdein M., Raza K., Khalid F.A., Mabrouki T. Numerical investigation of the effect of interfacial thermal resistance upon the thermal conductivity of copper/diamond composites. Mater. Des., 2015, 86, 248.

[13]

He J.S., Wang X.T., Zhang Y., Zhao Y.M., Zhang H.L. Thermal conductivity of Cu–Zr/diamond composites produced by high temperature-high pressure method. Compos. Part B, 2015, 68, 22.

[14]

Bai H., Ma N.G., Lang J., Zhu C.X., Ma Y. Thermal conductivity of Cu/diamond composites prepared by a new pretreatment of diamond powder. Compos. Part B, 2013, 52, 182.

[15]

Mizuuchi K., Inoue K., Agari Y., Yamada S., Tanaka M., Sugioka M., Takeuchi T., Tani J., Kawahara M., Lee J.H., Makino Y. Thermal properties of diamond-particle-dispersed Cu-matrix-composites fabricated by spark plasma sintering (SPS). Mater. Sci. Forum, 2010, 638-642, 2115.

[16]

Gan Z.T., Ren S.B., Shen X.Y., He X.B., Qu X.H., Guo J. Research on diamond/Cu composites fabricated by spark plasma sintering. Mater. Sci. Eng. Powder Metall., 2010, 15(1): 59.

[17]

Abyzov A.M., Kruszewski M.J., Ciupinski L., Mazurkiewicz M., Michalski A., Kurzydlowski K.J. Diamondtungsten based coating–copper composites with high thermal conductivity produced by pulse plasma sintering. Mater. Des., 2015, 76, 97.

[18]

Shen X.Y., Ren S.B., Liu N., He X.B., Qu X.H. High thermal-conductivity diamond/Al composites fabricated by spark plasma sintering. Mater. Sci. Eng. Powder Metall., 2011, 16(2): 260.

[19]

Hasselman D.P.H., Johnson L.F. Effective thermal conductivity of composites with interfacial thermal barrier resistance. J. Compos. Mater., 1987, 21(6): 508.

AI Summary AI Mindmap
PDF

109

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/