Effects of sphere size on the microstructure and mechanical properties of ductile iron–steel hollow sphere syntactic foams

Hamid Sazegaran , Ali-Reza Kiani-Rashid , Jalil Vahdati Khaki

International Journal of Minerals, Metallurgy, and Materials ›› 2016, Vol. 23 ›› Issue (6) : 676 -682.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2016, Vol. 23 ›› Issue (6) : 676 -682. DOI: 10.1007/s12613-016-1280-6
Article

Effects of sphere size on the microstructure and mechanical properties of ductile iron–steel hollow sphere syntactic foams

Author information +
History +
PDF

Abstract

The effects of sphere size on the microstructural and mechanical properties of ductile iron–steel hollow sphere (DI–SHS) syntactic foams were investigated in this study. The SHSs were manufactured by fluidized-bed coating via the Fe-based commercial powder–binder suspension onto expanded polystyrene spheres (EPSs). Afterwards, the DI–SHS syntactic foams were produced via a sand-mold casting process. The microstructures of specimens were investigated by optical microscopy, scanning electron microscopy (SEM), and energy- dispersive X-ray spectroscopy (EDS). The microscopic evaluations of specimens reveal distinct regions composed of the DI matrix, SHS shells, and compatible interface. As a result, the microstructures and graphite morphologies of the DI matrix depend on sphere size. When the sphere size decreases, the area fractions of cementite and graphite phases are observed to increase and decrease, respectively. Compression tests were subsequently conducted at ambient temperature on the DI–SHS syntactic foams. The results reveal that the compression behavior of the syntactic foams is enhanced with increasing sphere size. Furthermore, the compressed specimens demonstrate that microcracks start and grow from the interface region.

Keywords

ductile iron / steel / syntactic foams / microstructure / mechanical properties

Cite this article

Download citation ▾
Hamid Sazegaran, Ali-Reza Kiani-Rashid, Jalil Vahdati Khaki. Effects of sphere size on the microstructure and mechanical properties of ductile iron–steel hollow sphere syntactic foams. International Journal of Minerals, Metallurgy, and Materials, 2016, 23(6): 676-682 DOI:10.1007/s12613-016-1280-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ashby M.F., Evans A., Fleck N.A., Gibson L.J., Hutchinson J.W., Wadley H.N.G. Metal Foams: a Design Guide, Butterworth-Heinemann. Massachusetts, 2000 12.

[2]

Degischer H.P., Kriszt B. Handbook of Cellular Metals, Production, Processing and Applications, 2002 75.

[3]

Banhart J. Manufacture, characterisation and application of cellular metals and metal foams. Prog. Mater. Sci., 2001, 46(6): 559.

[4]

Neville B.P., Rabiei A. Composite metal foams processed through powder metallurgy. Mater. Des., 2008, 29(2): 388.

[5]

Srivastava V.C., Sahoo K.L. Processing, stabilization and applications of metallic foams. Art of science. Mater. Sci. Poland, 2007, 25(3): 735.

[6]

Gibson L.J., Ashby M.F. Cellular Solids: Structure and Properties, 1999 8.

[7]

Rabiei A., O’Neill A.T., Neville B.P. Processing and development of a new high strength metal foam. 2004 MRS Fall Meeting, 2004 517.

[8]

Pannert W., Winkler R., Merkel M. On the acoustical properties of metallic hollow sphere structures (MHSS). Mater. Lett., 2009, 63(13-14): 1121.

[9]

Waag U., Schneider L., Löthman P.A., Stephani G. Metallic hollow spheres materials for the future. Met. Powder Rep., 2000, 55(1): 29.

[10]

Amirjan M., Khorsand H., Khorasani M. Fluidized bed coating efficiency and morphology of coatings for producing Al-based nanocomposite hollow spheres. Int. J. Miner. Metall. Mater., 2014, 21(11): 1146.

[11]

Rabiei A., Vendra L.J. A comparison of composite metal foam’s properties and other comparable metal foams. Mater. Lett., 2009, 63(5): 533.

[12]

Rabiei A., Hammond V.H. A study on dynamic properties of composite metal foams. Army Research Laboratory, 2012

[13]

Rabiei A., Neville B., Reese N., Vendra L. New composite metal foams under compressive cyclic loadings. Mater. Sci. Forum, 2007, 539-543, 1868.

[14]

Rabiei A., O’Neill A.T. A study on processing of a composite metal foam via casting. Mater. Sci. Eng. A, 2005, 404(1-2): 159.

[15]

Rabiei A., Vendra L., Reese N., Young N., Neville B.P. Processing and characterization of a new composite metal foam. Mater. Trans. JIM, 2006, 47(9): 2148.

[16]

Alvandi-Tabrizi Y., Whisler D.A., Kim H., Rabiei A. High strain rate behavior of composite metal foams. Mater. Sci. Eng. A, 2015, 631, 248.

[17]

Yu W., Xin M.J., Liang X., Li H.J. Numerical investigation into effective elastic constants of MHS/EP composite. J. Mater. Eng. Perform., 2012, 21(10): 2038.

[18]

Augustin C., Hungerbach W. Production of hollow spheres (HS) and hollow sphere structures (HSS). Mater. Lett., 2009, 63(13-14): 1109.

[19]

Lim T.J., Smith B., McDowell D.L. Behavior of a random hollow sphere metal foam. Acta Mater., 2002, 50(11): 2867.

[20]

Jaeckel M., Smigilski H. Coating of Polymeric Spheres with Particles, 1988

[21]

Behnam M., Golezani A.S., Lima M.M. Optimization of surface quality and shell porosity in low carbon steel hollow spheres produced by powder metallurgy. Powder Technol., 2013, 235, 1025.

[22]

Behnam M., Golezani A.S., Lima M.M. The effect of size and morphology of iron powder on shell density in low carbon steel hollow spheres. Powder Metall. Prog., 2011, 11(3-4): 185.

[23]

Šupicová M., Orináková R., Kupková M., Kabátová M. Electrolytical modification of Fe hollow spheres by Cu, Ni and Ni–Cu binary coatings. Surf. Coat. Technol., 2005, 195(2-3): 130.

[24]

Andersen O., Waag U., Schneider L., Stephani G., Kieback B. Novel metallic hollow sphere structures. Adv. Eng. Mater., 2000, 2(4): 192.

[25]

Koo J.M., Araki H., Jung S.B. Effect of Zn addition on mechanical properties of brass hollow spheres. Mater. Sci. Eng. A, 2008, 483-484, 254.

[26]

Deng Y.D., Zhao L., Liu L., Shen B., Hu W.B. Submicrometer-sized hollow nickel spheres synthesized by autocatalytic reduction. Mater. Res. Bull., 2005, 40(10): 1864.

[27]

Rabiei A., Garcia-Avila M. Effect of various parameters on properties of composite steel foams under variety of loading rates. Mater. Sci. Eng. A, 2013, 564, 539.

[28]

Vendra L.J., Rabiei A. A study on Al–steel composite metal foam processed by casting. Mater. Sci. Eng. A, 2007, 465(1-2): 59.

[29]

Vendra L.J., Brown J.A., Rabiei A. Effect of processing parameters on the microstructure and mechanical properties of Al–steel composite foam. J. Mater. Sci., 2011, 46(13): 4574.

[30]

Bretschneider F., Peter B., Brucker J. Machine and Process for Producing a Free Flowing Product with a Coat, 1999

[31]

Wong-Angel W.D., Téllez-Jurado L., Chávez-Alcalá J.F., Chavira-Martínez E., Verduzco-Cedeño V.F. Effect of copper on the mechanical properties of alloys formed by powder metallurgy. Mater. Des., 2014, 58, 12.

[32]

Simchi A. Effect of C and Cu addition on the densification and microstructure of iron powder in direct laser sintering process. Mater. Lett., 2008, 62(17-18): 2840.

[33]

Kazemi M., Kiani-Rashid A.R., Nourian A. Impact toughness and microstructure of continuous medium carbon steel bar-reinforced cast iron composite. Mater. Sci. Eng. A, 2013, 559, 135.

[34]

Kazemi M., Kiani-Rashid A.R., Nourian A., Babakhani A. Investigation of microstructural and mechanical properties of austempered steel bar-reinforced ductile cast iron composite. Mater. Des., 2014, 53, 1047.

[35]

Górny M., Tyrala E. Effect of cooling rate on microstructure and mechanical properties of thin-walled ductile iron castings. J. Mater. Eng. Perform., 2013, 22(1): 300.

[36]

Binczyk F., Kowalski A., Furmanek J. The effect of cooling rate on the microstructure of nodular cast iron. Arch. Foundry Eng., 2007, 7(2): 115.

AI Summary AI Mindmap
PDF

109

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/