Effect of shot peening on hydrogen embrittlement of high strength steel

Xin-feng Li , Jin Zhang , Ming-ming Ma , Xiao-long Song

International Journal of Minerals, Metallurgy, and Materials ›› 2016, Vol. 23 ›› Issue (6) : 667 -675.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2016, Vol. 23 ›› Issue (6) : 667 -675. DOI: 10.1007/s12613-016-1279-z
Article

Effect of shot peening on hydrogen embrittlement of high strength steel

Author information +
History +
PDF

Abstract

The effect of shot peening (SP) on hydrogen embrittlement of high strength steel was investigated by electrochemical hydrogen charging, slow strain rate tensile tests, and hydrogen permeation tests. Microstructure observation, microhardness, and X-ray diffraction residual stress studies were also conducted on the steel. The results show that the shot peening specimens exhibit a higher resistance to hydrogen embrittlement in comparison with the no shot peening (NSP) specimens under the same hydrogen-charging current density. In addition, SP treatment sharply decreases the apparent hydrogen diffusivity and increases the subsurface hydrogen concentration. These findings are attributed to the changes in microstructure and compressive residual stress in the surface layer by SP. Scanning electron microscope fractographs reveal that the fracture surface of the NSP specimen exhibits the intergranular and quasi-cleavage mixed fracture modes, whereas the SP specimen shows only the quasi-cleavage fractures under the same hydrogen charging conditions, implying that the SP treatment delays the onset of intergranular fracture.

Keywords

high strength steel / shot peening / hydrogen embrittlement / cracking / fracture / inclusions

Cite this article

Download citation ▾
Xin-feng Li, Jin Zhang, Ming-ming Ma, Xiao-long Song. Effect of shot peening on hydrogen embrittlement of high strength steel. International Journal of Minerals, Metallurgy, and Materials, 2016, 23(6): 667-675 DOI:10.1007/s12613-016-1279-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wang M.Q., Akiyama E., Tsuzaki K. Determination of the critical hydrogen concentration for delayed fracture of high strength steel by constant load test and numerical calculation. Corros. Sci., 2006, 48(8): 2189.

[2]

Ding Y.S., Tsay L.W., Chiang M.F., Chen C. Gaseous hydrogen embrittlement of PH 13-8 Mo steel. J. Nucl. Mater., 2009, 385(3): 538.

[3]

Michler T., Naumann J. Microstructural aspects upon hydrogen environment embrittlement of various bcc steels. Int. J. Hydrogen Energy, 2010, 35(2): 821.

[4]

Barnoush A., Vehoff H. Recent developments in the study of hydrogen embrittlement: Hydrogen effect on dislocation nucleation. Acta Mater., 2010, 58(16): 5274.

[5]

Li X.F., Zhang J., Zhang P., Li P., Song X.L. Failure analysis of high strength steel bar used in a wind turbine foundation. J. Fail. Anal. Prev., 2015, 15(2): 295.

[6]

Takakuwa O., Soyama H. Using an indentation test to evaluate the effect of cavitation peening on the invasion of the surface of austenitic stainless steel by hydrogen. Surf. Coat. Technol., 2012, 206(18): 3747.

[7]

Takakuwa O., Ohm T., Nishikawa M., Toshimitsu Y.A., Soyama H. Suppression of fatigue crack propagation with hydrogen embrittlement in stainless steel by cavitation peening. Strength Fract. Complex., 2011, 7(1): 79.

[8]

Takakuwa O., Soyama H. Suppression of hydrogen-assisted fatigue crack growth in austenitic stainless steel by cavitation peening. Int. J. Hydrogen Energy, 2012, 37(6): 5268.

[9]

Marchi C.S., Zaleski T., Lee S., Yang N.Y.C., Stuart B. Effect of laser peening on the hydrogen compatibility of corrosion-resistant nickel alloy. Scripta Mater., 2008, 58(9): 782.

[10]

Dong C.F., Xiao K., Liu Z.Y., Yang W.J., Li X.G. Hydrogen induced cracking of X80 pipeline steel. Int. J. Miner. Metall. Mater., 2010, 17(5): 579.

[11]

Dong C.F., Liu Z.Y., Li X.G., Cheng Y.F. Effects of hydrogen-charging on the susceptibility of X100 pipeline steel to hydrogen-induced cracking. Int. J. Hydrogen Energy, 2009, 34(24): 9879.

[12]

Li X.F., Wang Y.F., Zhang P., Li B., Song X.L., Chen J. Effect of pre-strain on hydrogen embrittlement of high strength steels. Mater. Sci. Eng. A, 2014, 616, 116.

[13]

Li X.F., Zhang J., Wang Y.F., Li B., Zhang P., Song X.L. Effect of cathodic hydrogen-charging current density on mechanical properties of prestrained high strength steels. Mater. Sci. Eng. A, 2015, 641, 45.

[14]

Addach H., Berçot P., Rezrazi M., Takadoum J. Study of the electrochemical permeation of hydrogen in iron. Corros. Sci., 2009, 51(2): 263.

[15]

Rivera P.C., Ramunni V.P., Bruzzoni P. Hydrogen trapping in an API 5L X60 steel. Corros. Sci., 2012, 54, 106.

[16]

Huang Y.L., Nakajima A., Nishikata A., Tsuru T. Effect of mechanical deformation on permeation of hydrogen in iron. ISIJ Int., 2003, 43(4): 548.

[17]

Liang Y., Sofronis P., Dodds R.H. Interaction of hydrogen with crack-tip plasticity: effects of constraint on void growth. Mater. Sci. Eng. A, 2004, 366(2): 397.

[18]

Krom A.H.M., Koers R.W.J., Bakker A. Hydrogen transport near a blunting cracktip. J. Mech. Phys. Solids, 1999, 47(4): 971.

[19]

Takakuwa O., Nishikawa M., Soyama H. Numerical simulation of the effects of residual stress on the concentration of hydrogen around a crack tip. Surf. Coat. Technol., 2012, 206(11-12): 2892.

[20]

Brass A.M., Chene J., Anteri G., Ovejero-Garcia J., Castex L. Role of shot-peening on hydrogen embrittlement of a low-carbon steel and a 304 stainless steel. J. Mater. Sci., 1991, 26(16): 4517.

[21]

Horikawa K., Ando N., Kobayashi H., Urushihara W. Visualization of hydrogen gas evolution during deformation and fracture in SCM 440 steel with different tempering conditions. Mater. Sci. Eng. A, 2012, 534, 495.

[22]

Au M. High temperature electrochemical charging of hydrogen and its application in hydrogen embrittlement research. Mater. Sci. Eng. A, 2007, 454-455, 564.

[23]

Wang M.Q., Akiyama E., Tsuzaki K. Hydrogen degradation of a boron-bearing steel with 1050 and 1300 MPa strength levels. Scripta Mater., 2005, 52(5): 403.

[24]

Martin M.L., Somerday B.P., Ritchie R.O., Sofronis P., Robertson I.M. Hydrogen-induced intergranular failure in nickel revisited. Acta Mater., 2012, 60, 2739.

AI Summary AI Mindmap
PDF

145

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/