Abrasive resistance of metastable V–Cr–Mn–Ni spheroidal carbide cast irons using the factorial design method

V. G. Efremenko , K. Shimizu , A. P. Cheiliakh , T. V. Pastukhova , Yu. G. Chabak , K. Kusumoto

International Journal of Minerals, Metallurgy, and Materials ›› 2016, Vol. 23 ›› Issue (6) : 645 -657.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2016, Vol. 23 ›› Issue (6) : 645 -657. DOI: 10.1007/s12613-016-1277-1
Article

Abrasive resistance of metastable V–Cr–Mn–Ni spheroidal carbide cast irons using the factorial design method

Author information +
History +
PDF

Abstract

Full factorial design was used to evaluate the two-body abrasive resistance of 3wt%C–4wt%Mn–1.5wt%Ni spheroidal carbide cast irons with varying vanadium (5.0wt%–10.0wt%) and chromium (up to 9.0wt%) contents. The alloys were quenched at 920°C. The regression equation of wear rate as a function of V and Cr contents was proposed. This regression equation shows that the wear rate decreases with increasing V content because of the growth of spheroidal VC carbide amount. Cr influences the overall response in a complex manner both by reducing the wear rate owing to eutectic carbides (M7C3) and by increasing the wear rate though stabilizing austenite to deformation-induced martensite transformation. This transformation is recognized as an important factor in increasing the abrasive response of the alloys. By analyzing the regression equation, the optimal content ranges are found to be 7.5wt%–10.0wt% for V and 2.5wt%–4.5wt% for Cr, which corresponds to the alloys containing 9vol%–15vol% spheroidal VC carbides, 8vol%–16vol% M7C3, and a metastable austenite/martensite matrix. The wear resistance is 1.9–2.3 times that of the traditional 12wt% V–13wt% Mn spheroidal carbide cast iron.

Keywords

cast irons / carbides / abrasive resistance / factorial design

Cite this article

Download citation ▾
V. G. Efremenko, K. Shimizu, A. P. Cheiliakh, T. V. Pastukhova, Yu. G. Chabak, K. Kusumoto. Abrasive resistance of metastable V–Cr–Mn–Ni spheroidal carbide cast irons using the factorial design method. International Journal of Minerals, Metallurgy, and Materials, 2016, 23(6): 645-657 DOI:10.1007/s12613-016-1277-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Inthidech S., Chooprajong A., Sricharoenchai P., Matsubara Y. Two-body and three-body types abrasive wear behavior of hypoeutectic 26 mass% Cr cast irons with molybdenum. Mater. Trans. JIM, 2012, 53(7): 1258.

[2]

Mohammadnezhad M., Javaheri V., Shamanian M., Naseri M., Bahrami M. Effects of vanadium addition on microstructure, mechanical properties and wear resistance of Ni-Hard4 white cast iron. Mater. Des., 2013, 49, 888.

[3]

Chung R.J., Tang X., Li D.Y., Hinckley B., Dolman K. Microstructure refinement of hypereutectic high Cr cast irons using hard carbide-forming elements for improved wear resistance. Wear, 2013, 301(1-2): 695.

[4]

Wang Y.P., Li D.Y., Parent L., Tian H. Performances of hybrid high-entropy high-Cr cast irons during sliding wear and air-jet solid-particle erosion. Wear, 2013, 301(1-2): 390.

[5]

Qi X.W., Jia Z.N., Yang Q.X., Yang Y.L. Effects of vanadium additive on structure property and tribological performance of high chromium cast iron hardfacing metal. Surf. Coat. Technol., 2011, 205(23-24): 5510.

[6]

Wu Q.L., Li W.G., Zhong N., Wu G., Wang H.S. Microstructure and wear behavior of laser cladding VC–Cr7C3 ceramic coating on steel substrate. Mater. Des., 2013, 49, 10.

[7]

Zhong L.S., Ye F.X., Xu Y.H., Li J.S. Microstructure and abrasive wear characteristics of in situ vanadium carbide particulate-reinforced iron matrix composites. Mater. Des., 2014, 54, 564.

[8]

Zhukov A.A., Sil’man G.I., Agapova L.I., Panin B.B. The Charpy-Bochvar principle: white and stable-mottled wear resistant irons. Indian Foundry J., 1996, 42(6): 11.

[9]

Sil’man G.I. Alloyed white iron with composite structure. Met. Sci. Heat Treat., 2005, 47(7): 343.

[10]

Sil’man G.I. Phase diagram of the Fe-C-V system and its application to metallography of steels and cast irons. Met. Sci. Heat Treat., 1992, 34(11): 665.

[11]

Fras E., Kawalec M., Lopez H.F. Solidification microstructures and mechanical properties of high-vanadium Fe-C-V and Fe-C-V-Si alloys. Mater. Sci. Eng. A, 2009, 524(1-2): 193.

[12]

Kawalec M., Fras E. Structure, mechanical properties and wear resistance of high-vanadium cast iron. ISIJ Int., 2008, 48(4): 518.

[13]

Wang C.C., Hsu H.T., Ma Q. Formation of spheroidal carbide in vanadium white cast iron by rare earth modification. Mater. Sci. Technol., 1990, 6(9): 905.

[14]

Shigenori N., Satoru Y., Teruo T. Composition and structure of vanadium carbides in high V-Cr-Ni cast iron. J. Jpn. Foundry Eng. Soc., 2002, 74(5): 279.

[15]

Kawano Y., Nishiuchi S., Sugawara K., Yamamoto S. Corrosion and wear resistance of high V-Cr-Ni cast iron with spheroidal carbides. J. Jpn. Foundry Eng. Soc., 1999, 71(11): 727.

[16]

Takeda M., Mitome M., Hayakawa H., Nishiuchi S., Tanabe T., Yamamoto S. Morphology and crystallographic phase of V–C particles formed in Fe–Cr–Ni–V–C alloys. Mater. Sci. Technol., 2013, 29(6): 672.

[17]

Kawalec M. The spheroidization of VC carbides in high-vanadium cast iron. Arch. Foundry Eng., 2011, 3, 111.

[18]

Shigenori N., Tadashi K., Hideto M. Influence of melting conditions on morphology of vanadium-carbide in stainless spheroidal carbide cast iron. J. Jpn. Foundry Eng. Soc., 2007, 79(3): 133.

[19]

Shimizu K., Naruse T., Xinba Y., Kimura K., Minami K., Matsumoto H. Erosive wear properties of high V-Cr-Ni stainless spheroidal carbides cast iron at high temperature. Wear, 2009, 267(1-4): 104.

[20]

Tokaji K., Horie T., Enomoto Y. Roles of microstructure and carbides in fatigue crack propagation in high V-Cr-Ni cast irons. J. Mater. Process. Technol., 2007, 190(1-3): 81.

[21]

Kawalec M., Olejnik E. Abrasive wear resistance of cast iron with precipitates of spheroidal VC carbides. Arch. Foundry Eng., 2012, 12(2): 221.

[22]

Yaer X., Shimizu K., Matsumoto H., Kitsudo T., Momono T. Erosive wear characteristics of spheroidal carbides cast iron. Wear, 2008, 264(11-12): 947.

[23]

Efremenko V.G., Shimizu K., Cheiliakh A.P., Kozarevs’ka T.V., Hara H., Kusumoto K. Abrasive wear resistance of spheroidal vanadium carbide cast irons. J. Frict. Wear, 2013, 34(6): 466.

[24]

Yoneta N., Shimizu K., Hara H., Tanaka M., Nawa Y. Wear characteristics of spheroidal carbides cast irons in uniaxial rotary glass shredder. Key Eng. Mater., 2011, 457, 249.

[25]

Uematsu Y., Kakiuchi T., Tokaji K., Nishigaki K., Ogasawara M. Effects of shot peening on fatigue behavior in high speed steel and cast iron with spheroidal vanadium carbides dispersed within martensitic-matrix microstructure. Mater. Sci. Eng. A, 2013, 561, 386.

[26]

Tokaji K., Horie T., Enomoto Y. Effects of microstructure and carbide spheroidization on fatigue behaviour in high V–Cr–Ni cast irons. Int. J. Fatigue, 2006, 28(3): 281.

[27]

Silman G.I., Pamfilov E.A., Gryadunov S.S., Gruvman A.I. Effect of the structure of chromium–vanadium white irons on their wear resistance. Met. Sci. Heat Treat., 2007, 49(7): 405.

[28]

Bedolla-Jacuinde A., Arias L., Hernández B. Kinetics of secondary carbides precipitation in a high-chromium white iron. J. Mater. Eng. Perform., 2003, 12(4): 371.

[29]

Efremenko V., Shimizu K., Chabak Y. Effect of destabilizing heat treatment on solid-state phase transformation in high-chromium cast irons. Metall. Mater. Trans. A, 2013, 44(12): 5434.

[30]

Karantzalis A.E., Lekatou A., Mavros H. Microstructural modifications of as-cast high-chromium white iron by heat treatment. J. Mater. Eng. Perform., 2009, 18(2): 174.

[31]

Efremenko V.G., Chabak Yu.G., Brykov M.N. Kinetic parameters of secondary carbide precipitation in high-Cr white iron alloyed by Mn-Ni-Mo-V complex. J. Mater. Eng. Perform., 2013, 22(5): 1378.

[32]

Van Slycken J., Verleysen P., Degrieck J., Samek L., de Cooman B.C. High-strain-rate behavior of low-alloy multiphase aluminum and silicon-based transformation-induced plasticity steels. Metall. Mater. Trans. A, 2006, 37(5): 1527.

[33]

Solomon N., Solomon I. Deformation induced martensite in AISI 316 stainless steel. Rev. Metal., 2010, 46(2): 121.

[34]

Koval A.D., Efremenko V.G., Brykov M.N., Andrushchenko M.I., Kulikovskii R.A., Efremenko A.V. Principles for development grinding media with increased wear resistance: Part 2. Optimization of steel composition to suit conditions of operation of grinding media. J. Frict. Wear, 2012, 33(2): 153.

[35]

Xu X.L., Yu Z.W., Ma Y.Q., Wang X., Shi Y.Q. Martensitic transformation and work hardening of metastable austenite induced by abrasion in austenitic Fe-C-Cr-Mn-B alloy: a TEM study. Mater. Sci. Technol., 2002, 18(12): 1561.

[36]

Efremenko V.G., Shimizu K., Noguchi T., Efremenko A.V., Chabak Yu.G. Impact-abrasive-corrosion wear of Fe-based alloys: influence of microstructure and chemical composition upon wear resistance. Wear, 2013, 305(1-2): 155.

[37]

Colaço R., Vilar R. On the influence of retained austenite in the abrasive wear behaviour of a laser surface melted tool steel. Wear, 2005, 258(1-4): 225.

[38]

Efremenko V.G., Shimizu K., Cheiliakh A.P., Kozarevskaya T.V., Kusumoto K., Yamamoto K. Effect of vanadium and chromium on the microstructural features of V-Cr-Mn-Ni spheroidal carbide cast irons. Int. J. Miner. Metall. Mater., 2014, 21(11): 1096.

[39]

Montgomery D.C. Design and Analysis of Experiments, 2013

[40]

Gorelik S.S., Rastorguev L.N., Skakov Yu.A. X-ray Diffraction and Electron-optical Analyses, 2002

[41]

Wang L., Gabrisch H., Lorenz U., Schimansky F.P., Schreyer A., Stark A., Pyczak F. Nucleation and thermal stability of carbide precipitates in high Nb containing TiAl alloys. Intermetallics, 2015, 66, 111.

[42]

Sharma R.C. Principles of Heat Treatment of Steels, 2003

[43]

Koval’ A.D., Efremenko V.G., Brykov M.N., Andrushchenko M.I., Kulikovskii R.A., Efremenko A.V. Principles for developing grinding media with increased wear resistance: Part 1. Abrasive wear resistance of iron-based alloys. J. Frict. Wear, 2012, 33(1): 39.

[44]

Albertin E., Sinatora A. Effect of carbide fraction and matrix microstructure on the wear of cast iron balls tested in a laboratory ball mill. Wear, 2001, 250(1-12): 492.

[45]

Liu H.H., Wang J., Yang H.S., Shen B.L. Effects of cryogenic treatment on microstructure and abrasion resistance of CrMnB high-chromium cast iron subjected to sub-critical treatment. Mater. Sci. Eng. A, 2008, 478(1-2): 324.

[46]

Malinov L.S., Malinov V.L., Burova D.V., Anichenkov V.V. Increasing the abrasive wear resistance of low-alloy steel by obtaining residual metastable austenite in the structure. J. Frict. Wear, 2015, 36(3): 237.

AI Summary AI Mindmap
PDF

107

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/