Characterization of mechanothermally processed nanostructured ZnO

Saeed Karimi , Abolghasem Ataie

International Journal of Minerals, Metallurgy, and Materials ›› 2016, Vol. 23 ›› Issue (5) : 588 -594.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2016, Vol. 23 ›› Issue (5) : 588 -594. DOI: 10.1007/s12613-016-1270-8
Article

Characterization of mechanothermally processed nanostructured ZnO

Author information +
History +
PDF

Abstract

In this paper, the Taguchi method with an L9(34) orthogonal array was used as experimental design to determine the optimum conditions for preparing ZnO nanoparticles via a mechanothermal route. ZnSO4·H2O and Na2CO3 were used as starting materials. The effects of milling time, Na2CO3/ZnSO4·H2O molar ratio, and ball-to-powder mass ratio (BPR) on the bandgap (E g) of ZnO nanoparticles were investigated. The ranges of the investigated experimental conditions were 5–15 h for the milling time (t), 1.0–1.2 for the Na2CO3/ZnSO4·H2O molar ratio (M), and 10–30 for BPR. The milling time and BPR exhibited significant effects; an increase in milling time reduced the bandgap. The optimum conditions from this study were t 3 = 15 h, M 1 = 1, and BPR2 = 20. Only two significant factors (t 3, 15 h; BPR2, 20) were used to estimate the performance at the optimum conditions. The calculated bandgap was 3.12 eV, in reasonable agreement with the experimental results obtained under the optimized conditions.

Keywords

mechanothermal treatment / synthesis / nanoparticles / zinc oxide / Taguchi methods

Cite this article

Download citation ▾
Saeed Karimi, Abolghasem Ataie. Characterization of mechanothermally processed nanostructured ZnO. International Journal of Minerals, Metallurgy, and Materials, 2016, 23(5): 588-594 DOI:10.1007/s12613-016-1270-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hu S.H., Chen Y.C., Hwang C.C., Peng C.H., Gong D.C. Analysis of growth parameters for hydrothermal synthesis of ZnO nanoparticles through a statistical experimental design method. J. Mater. Sci., 2010, 45(19): 5309.

[2]

Khorsand Zak A., Majid W.H.A., Darroudi M., Yousefi R. Synthesis and characterization of ZnO nanoparticles prepared in gelatin media. Mater. Lett., 2011, 65(1): 70.

[3]

Srivatsa K.M.K., Chhikara D., Kumar M.S. Synthesis of aligned ZnO nanorod array on silicon and sapphire substrates by thermal evaporation technique. J. Mater. Sci. Technol., 2011, 27(8): 701.

[4]

Stankovic A., Veselinovic L., Škapin S.D., Markovic S., Uskokovic D. Controlled mechanochemically assisted synthesis of ZnO nanopowders in the presence of oxalic acid. J. Mater. Sci., 2011, 46(11): 3716.

[5]

Aghababazadeh R., Mazinani B., Mirhabibi A., Tamizifar M. ZnO nanoparticles synthesized by mechanochemical processing. J. Phys. Conf. Ser., 2006, 26, 2006.

[6]

Pardeshi S.K., Patil A.B. Effect of morphology and crystallite size on solar photocatalytic activity of zinc oxide synthesized by solution free mechanochemical method. J. Mol. Catal. A, 2009, 308(1-2): 32.

[7]

Tadjarodi A., Izadi M., Imani M. Synthesis and characterization of the special ZnO nanostructure by mechanochemical process. Mater. Lett., 2013, 92, 2013.

[8]

Moghaddam J., Kolahgar-Azari S., Karimi S. Determination of optimum conditions for nano-silver preparation from AgCl based on the Taguchi design by the use of optical properties of silver. Ind. Eng. Chem. Res., 2012, 51(8): 3224.

[9]

Yang H.M., Zhang X.C., Tang A.D., Ao W.Q. Formation of zinc oxide nanoparticles by mechanochemical reaction. Mater. Sci. Technol., 2004, 20(11): 1493.

[10]

Moballegh A., Shahverdi H.R., Aghababazadeh R., Mirhabibi A.R. ZnO nanoparticles obtained by mechanochemical technique and the optical properties. Surf. Sci., 2007, 601(13): 2850.

[11]

Kim K.D., Choi D.W., Choa Y.H., Kim H.T. The effect of parameters on the formation of ZnO nanoparticles by statistical experimental design method in vibrating milling process. J. Mater. Process. Technol., 2008, 202(1-3): 569.

[12]

Rautio J., Perämäki P., Honkamo J., Jantunen H. Effect of synthesis method variables on particle size in the preparation of homogeneous doped nano ZnO material. Microchem. J., 2009, 91(2): 272.

[13]

Liu M., Kitai A.H., Mascher P. Point defects and luminescence centres in zinc oxide and zinc oxide doped with manganese. J. Lumin., 1992, 54(1): 35.

[14]

Pearton S.J., Abernathy C.R., Overberg M.E., Thaler G.T., Norton D.P., Theodoropoulou N., Hebard A.F., Park Y.D., Ren F., Kim J., Boatner L.A. Wide band gap ferromagnetic semiconductors and oxides. J. Appl. Phys., 2003, 93(1): 1.

[15]

Ueda K., Tabata H., Kawai T. Magnetic and electric properties of transition-metal-doped ZnO films. Appl. Phys. Lett., 2001, 79(7): 988.

[16]

Cullity B.D. Elements of X-ray Diffraction, 1956, Massachusetts, Addison Wesley, 259.

[17]

Roy R.K. A Primer on the Taguchi Method, 1990, New York, Van Nostrand Reinhold, 100.

[18]

Diouri J., Lascaray J.P., Amrani M.E. Effect of the magnetic order on the optical-absorption edge in Cd1-xMnxTe. Phys. Rev. B, 1985, 31(12): 7995.

[19]

Bylsma R.B., Becker W.M., Kossut J., Debska U., Yoder-Short D. Dependence of energy gap on x and T in Zn1-xMnxSe: the role of exchange interaction. Phys. Rev. B, 1986, 33(12): 8207.

[20]

Meulenkamp E.A. Synthesis and growth of ZnO nanoparticles. J. Phys. Chem. B, 1998, 102(29): 5566.

[21]

Sheibani S., Ataie A., Heshmati-Manesh S., Khayati G.R. Structural evolution in nano-crystalline Cu synthesized by high energy ball milling. Mater. Lett., 2007, 61(14-15): 3204.

[22]

Wang J., Wang Z., Huang B., Ma Y., Liu Y., Qin X., Zhang X., Dai Y. Oxygen vacancy induced band-gap narrowing and enhanced visible light photocatalytic activity of ZnO. ACS Appl. Mater. Interfaces, 2012, 4(8): 4024.

[23]

Jin Z., Fukumura T., Kawasaki M., Ando K., Saito H., Sekiguchi T., Yoo Y.Z., Murakami M., Matsumoto Y., Hasegawa T., Koinuma H. High throughput fabrication of transition- metal-doped epitaxial ZnO thin films: a series of oxide- diluted magnetic semiconductors and their properties. Appl. Phys. Lett., 2001, 78(24): 3824.

[24]

Pandiadurai K., Mani G.K., Shankar P., Rayappan J.B.B. ZnO nanospheres to nanorods-morphology transition via Fe-doping. Superlattices Microstruct., 2013, 62, 2013.

[25]

Iqbal J., Jan T., Ronghai Y., Naqvi S.H., Ahmad I. Doping induced tailoring in the morphology. band-Gap and ferromagnetic properties of biocompatible ZnO nanowires, nanorods and nanoparticles, Nano Micro Lett., 2014, 6(3): 242.

[26]

Coey J.M.D., Viret M., Von Molnár S. Mixed-valence manganites. Adv. Phys., 2009, 58(6): 571.

[27]

Vayssieres L., Keis K., Hagfeldt A., Lindquist S. Three-dimensional array of highly oriented crystalline ZnO microtubes. Chem. Mater., 2001, 13(12): 4395.

[28]

Alim K.A., Fonoberov V.A., Shamsa M., Balandin A.A. Micro-Raman investigation of optical phonons in ZnO nanocrystals. J. Appl. Phys, 2005, 97, 2005.

[29]

de Faria D.L.A., Silva S.V., de Oliveira M.T. Raman microspectroscopy of some iron oxides and oxyhydroxides. J. Raman Spectrosc., 1997, 28(11): 873.

[30]

Hanesch M. Raman spectroscopy of iron oxides and (oxy) hydroxides at low laser power and possible applications in environmental magnetic studies. Geophys. J. Int., 2009, 177(3): 941.

AI Summary AI Mindmap
PDF

120

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/