Microstructural evolution and castability prediction in newly designed modern third-generation nickel-based superalloys

Homam Naffakh-Moosavy

International Journal of Minerals, Metallurgy, and Materials ›› 2016, Vol. 23 ›› Issue (5) : 548 -562.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2016, Vol. 23 ›› Issue (5) : 548 -562. DOI: 10.1007/s12613-016-1266-4
Article

Microstructural evolution and castability prediction in newly designed modern third-generation nickel-based superalloys

Author information +
History +
PDF

Abstract

The present research aims to establish a quantitative relation between microstructure and chemical composition (i.e., Ti, Al, and Nb) of newly designed nickel-based superalloys. This research attempts to identify an optimum microstructure at which the minimum quantities of γ/γ′ and γ/γ″ compounds are achieved and the best castability is predicted. The results demonstrate that the highest quantity of intermetallic eutectics (i.e., 41.5wt%) is formed at 9.8wt% (Ti + Al). A significant quantity of intermetallics formed in superalloy 1 (with a composition of γ − 9.8wt% (Ti + Al)), which can deteriorate its castability. The type and morphology of the eutectics changed and the amount considerably decreased with decreasing Ti + Al content in superalloy 2 (with a composition of γ − 7.6wt% (Ti + Al), 1.5wt% Nb). Thus, it is predicted that the castability would improve for superalloy 2. The same trend was observed for superalloy 4 (with a composition of γ − 3.7wt% (Ti + Al), 4.4wt% Nb). This means that the amount of Laves increases with increasing Nb (to 4.4wt%) and decreasing Ti + Al (to 3.7wt%) in superalloy 4. The best castability was predicted for superalloy 3 (with a composition of γ − 5.7wt% (Ti + Al), 2.8wt% Nb).

Keywords

nickel-based superalloys / intermetallics / castability / microstructural evolution / chemical composition

Cite this article

Download citation ▾
Homam Naffakh-Moosavy. Microstructural evolution and castability prediction in newly designed modern third-generation nickel-based superalloys. International Journal of Minerals, Metallurgy, and Materials, 2016, 23(5): 548-562 DOI:10.1007/s12613-016-1266-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Reed R.C. The Superalloys Fundamentals and Applications, 2008, Cambridge, U.K., Cambridge University Press, 1.

[2]

Dupont J.N., Lippold J.C., Kiser S.D. Welding Metallurgy and Weldability of Nickel-base Alloys, 2009 1.

[3]

Lachowicz M., Dudzinski W., Haimann K., Podrez- Radziszewska M. Microstructure transformations and cracking in the matrix of' superalloy Inconel 713C melted with electron beam. Mater. Sci. Eng. A, 2008, 479(1-2): 269.

[4]

Zhao S., Xie X., Smith G.D., Patel S.J. Microstructural stability and mechanical properties of a new nickel-based superalloy. Mater. Sci. Eng. A, 2003, 355(1-2): 96.

[5]

Attallah M.M., Terasaki H., Moat R.J., Bray S.E., Komizo Y., Preuss M. In-situ observation of primary' melting in Ni-base superalloy using confocal laser scanning microscopy. Mater. Charact., 2011, 62(8): 760.

[6]

Metzler D.A. A Gleeble-based method for ranking the strain-age cracking susceptibility of Ni-based superalloys. Weld. J., 2008, 87, 2008.

[7]

Thompson R.G., Dobbs J.R., Mayo D.E. The effect of heat treatment on microfissuring in Alloy 718. Weld. J., 1986, 65(11): 299.

[8]

Davies G.J. Solidification and Casting, 1973, New York, Halsted Press, Division of Wiley, 40.

[9]

ASM Metal Handbook, Casting, ASM International, 1992, p. 1791.

[10]

Wilson B.C., Cutler E.R., Fuchs G.E. Effect of solidification parameters on the microstructures. and properties of CMSX-10, Mater. Sci. Eng. A, 2008, 479(1-2): 356.

[11]

Campbell J. Stop pouring. start casting, Int. J. Metalcast., 2012, 6(3): 7.

[12]

Egbewande A.T., Buckson R.A., Ojo O.A. Analysis of laser beam weldability of Inconel 738 superalloy. Mater. Charact., 2010, 61(5): 569.

[13]

Chiang M.F., Chen C. Induction-assisted laser welding of IN-738 nickel-base superalloy. Mater. Chem. Phys., 2009, 114(1): 415.

[14]

Österle W., Krause S., Moelders T., Neidel A., Oder G., Völker J. Influence of heat treatment on microstructure and hot crack susceptibility of laser-drilled turbine blades made from René 80. Mater. Charact., 2008, 59(11): 1564.

[15]

Rush M.T., Colegrove P.A., Zhang Z., Broad D. Liquation and post-weld heat treatment cracking in Rene 80 laser repair welds. J. Mater. Process. Technol., 2012, 212(1): 188.

[16]

DuPont J.N., Notis M.R., Marder A.R., Robino C.V., Michael J.R. Solidification of Nb-bearing superalloys: Part I. Reaction sequences. Metal. Mater. Trans. A, 1998, 29(11): 2785.

[17]

Radhakrishnan B., Thompson R.G. Liquid film migration (LFM) in the weld heat affected zone (HAZ) of a Ni-base superalloy. Scripta Mater., 1990, 24(3): 537.

[18]

Naffakh Moosavy H., Aboutalebi M.R., Seyedein S.H., Khodabakhshi M., Mapelli C. New approach for assessing the weldability of precipitation-strengthened nickel-base superalloys. Int. J. Miner. Metall. Mater., 2013, 20(12): 1183.

[19]

Baeslack W.A., Nelson D.E. Morphology of weld heat-affected zone liquation in cast alloy 718. Metallography, 1986, 19(3): 371.

[20]

Cao X., Rivaux B., Jahazi M., Cuddy J., Birur A. Effect of pre-and post-weld heat treatment on metallurgical and tensile properties of Inconel 718 alloy butt joints welded using 4 kW Nd:YAG laser. J. Mater. Sci., 2009, 44(17): 4557.

[21]

Odabasi A., Ünlü N., Göller G., Eruslu M.N. A study on laser beam welding (LBW) technique: effect of heat input on the microstructural evolution of superalloy Inconel 718. Metal. Mater. Trans. A, 2010, 41(9): 2357.

[22]

Reddy G.M., Murthy C.V.S., Rao K.S., Rao K.P. Improvement of mechanical properties of Inconel 718 electron beam welds: influence of welding techniques and postweld heat treatment. Int. J. Adv. Manuf. Technol., 2009, 43(7): 671.

[23]

Sivarpasad K., Raman S.G.S. Influence of weld cooling rate on microstructure and mechanical properties of alloy 718 weldments. Metal. Mater. Trans. A, 2008, 39(9): 2115.

[24]

Vishwakarma K.R., Richards N.L., Chaturvedi M.C. Microstructural analysis of fusion and heat affected zones in electron beam welded ALLVAC® 718PLUSTM superalloy. Mater. Sci. Eng. A, 2008, 480, 2008.

[25]

Krenz D., Egbewande A.T., Zhang H.R., Ojo O.A. Single pass laser joining of Inconel 718 superalloy with filler. Mater. Sci. Technol., 2011, 27(1): 268.

[26]

Qian M., Lippold J.C. The effect of annealing twin-generated special grain boundaries on HAZ liquation cracking of nickel-base superalloys. Acta Mater., 2003, 51(12): 3351.

[27]

Qian M., Lippold J.C. The effect of rejuvenation heat treatments on the repair weldability of wrought alloy 718. Mater. Sci. Eng. A, 2003, 340(1-2): 225.

[28]

Zhang H.R., Ojo O.A. Non-equilibrium liquid phase dissolution of d phase precipitates in a nickel-based superalloy. Philos. Mag. Lett., 2009, 89(12): 787.

[29]

Huang C.A., Wang T.H., Lee C.H., Han W.C. A study of the heat-affected zone (HAZ) of an Inconel 718 sheet welded with electron-beam welding (EBW). Mater. Sci. Eng. A, 2005, 398(1-2): 275.

[30]

Ojo O.A., Richards N.L., Chaturvedi M.C. Contribution of constitutional liquation of gamma prime precipitate to weld HAZ cracking of cast Inconel 738 superalloy. Scripta Mater., 2004, 50(5): 641.

[31]

Montazeri M., Ghaini F.M. The liquation cracking be havior of IN738LC superalloy during low power Nd:YAG pulsed laser welding. Mater. Charact., 2012, 67, 2012.

[32]

Ferro P., Zambon A., Bonollo F. Investigation of electron- beam welding in wrought Inconel 706-experimental and numerical analysis. Mater. Sci. Eng. A, 2005, 392(1-2): 94.

[33]

Lachowicz M., Dudzinski M., Podrez-Radziszewska M. TEM observation of the heat-affected zone in electron beam welded superalloy Inconel 713C. Mater. Charact., 2008, 59(5): 560.

[34]

Sidhu R.K., Ojo O.A., Chaturvedi M.C. Microstructural analysis of laser-beam-welded directionally solidified INCONEL 738. Metall. Mater. Trans. A, 2007, 38(4): 858.

[35]

Naffakh Moosavy H., Aboutalebi M.R., Seyedein S.H., Mapelli C. A solidification model for prediction of castability in the precipitation-strengthened nickel-based superalloys. J. Mater. Process. Technol., 2013, 213(11): 1875.

[36]

Naffakh Moosavy H., Aboutalebi M.R., Seyedein S.H. An analytical algorithm to predict weldability of precipitation- strengthened nickel-base superalloys. J. Mater. Process. Technol., 2012, 212(11): 2210.

AI Summary AI Mindmap
PDF

129

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/