PDF
Abstract
The present research aims to establish a quantitative relation between microstructure and chemical composition (i.e., Ti, Al, and Nb) of newly designed nickel-based superalloys. This research attempts to identify an optimum microstructure at which the minimum quantities of γ/γ′ and γ/γ″ compounds are achieved and the best castability is predicted. The results demonstrate that the highest quantity of intermetallic eutectics (i.e., 41.5wt%) is formed at 9.8wt% (Ti + Al). A significant quantity of intermetallics formed in superalloy 1 (with a composition of γ − 9.8wt% (Ti + Al)), which can deteriorate its castability. The type and morphology of the eutectics changed and the amount considerably decreased with decreasing Ti + Al content in superalloy 2 (with a composition of γ − 7.6wt% (Ti + Al), 1.5wt% Nb). Thus, it is predicted that the castability would improve for superalloy 2. The same trend was observed for superalloy 4 (with a composition of γ − 3.7wt% (Ti + Al), 4.4wt% Nb). This means that the amount of Laves increases with increasing Nb (to 4.4wt%) and decreasing Ti + Al (to 3.7wt%) in superalloy 4. The best castability was predicted for superalloy 3 (with a composition of γ − 5.7wt% (Ti + Al), 2.8wt% Nb).
Keywords
nickel-based superalloys
/
intermetallics
/
castability
/
microstructural evolution
/
chemical composition
Cite this article
Download citation ▾
Homam Naffakh-Moosavy.
Microstructural evolution and castability prediction in newly designed modern third-generation nickel-based superalloys.
International Journal of Minerals, Metallurgy, and Materials, 2016, 23(5): 548-562 DOI:10.1007/s12613-016-1266-4
| [1] |
Reed R.C. The Superalloys Fundamentals and Applications, 2008, Cambridge, U.K., Cambridge University Press, 1.
|
| [2] |
Dupont J.N., Lippold J.C., Kiser S.D. Welding Metallurgy and Weldability of Nickel-base Alloys, 2009 1.
|
| [3] |
Lachowicz M., Dudzinski W., Haimann K., Podrez- Radziszewska M. Microstructure transformations and cracking in the matrix of' superalloy Inconel 713C melted with electron beam. Mater. Sci. Eng. A, 2008, 479(1-2): 269.
|
| [4] |
Zhao S., Xie X., Smith G.D., Patel S.J. Microstructural stability and mechanical properties of a new nickel-based superalloy. Mater. Sci. Eng. A, 2003, 355(1-2): 96.
|
| [5] |
Attallah M.M., Terasaki H., Moat R.J., Bray S.E., Komizo Y., Preuss M. In-situ observation of primary' melting in Ni-base superalloy using confocal laser scanning microscopy. Mater. Charact., 2011, 62(8): 760.
|
| [6] |
Metzler D.A. A Gleeble-based method for ranking the strain-age cracking susceptibility of Ni-based superalloys. Weld. J., 2008, 87, 2008.
|
| [7] |
Thompson R.G., Dobbs J.R., Mayo D.E. The effect of heat treatment on microfissuring in Alloy 718. Weld. J., 1986, 65(11): 299.
|
| [8] |
Davies G.J. Solidification and Casting, 1973, New York, Halsted Press, Division of Wiley, 40.
|
| [9] |
ASM Metal Handbook, Casting, ASM International, 1992, p. 1791.
|
| [10] |
Wilson B.C., Cutler E.R., Fuchs G.E. Effect of solidification parameters on the microstructures. and properties of CMSX-10, Mater. Sci. Eng. A, 2008, 479(1-2): 356.
|
| [11] |
Campbell J. Stop pouring. start casting, Int. J. Metalcast., 2012, 6(3): 7.
|
| [12] |
Egbewande A.T., Buckson R.A., Ojo O.A. Analysis of laser beam weldability of Inconel 738 superalloy. Mater. Charact., 2010, 61(5): 569.
|
| [13] |
Chiang M.F., Chen C. Induction-assisted laser welding of IN-738 nickel-base superalloy. Mater. Chem. Phys., 2009, 114(1): 415.
|
| [14] |
Österle W., Krause S., Moelders T., Neidel A., Oder G., Völker J. Influence of heat treatment on microstructure and hot crack susceptibility of laser-drilled turbine blades made from René 80. Mater. Charact., 2008, 59(11): 1564.
|
| [15] |
Rush M.T., Colegrove P.A., Zhang Z., Broad D. Liquation and post-weld heat treatment cracking in Rene 80 laser repair welds. J. Mater. Process. Technol., 2012, 212(1): 188.
|
| [16] |
DuPont J.N., Notis M.R., Marder A.R., Robino C.V., Michael J.R. Solidification of Nb-bearing superalloys: Part I. Reaction sequences. Metal. Mater. Trans. A, 1998, 29(11): 2785.
|
| [17] |
Radhakrishnan B., Thompson R.G. Liquid film migration (LFM) in the weld heat affected zone (HAZ) of a Ni-base superalloy. Scripta Mater., 1990, 24(3): 537.
|
| [18] |
Naffakh Moosavy H., Aboutalebi M.R., Seyedein S.H., Khodabakhshi M., Mapelli C. New approach for assessing the weldability of precipitation-strengthened nickel-base superalloys. Int. J. Miner. Metall. Mater., 2013, 20(12): 1183.
|
| [19] |
Baeslack W.A., Nelson D.E. Morphology of weld heat-affected zone liquation in cast alloy 718. Metallography, 1986, 19(3): 371.
|
| [20] |
Cao X., Rivaux B., Jahazi M., Cuddy J., Birur A. Effect of pre-and post-weld heat treatment on metallurgical and tensile properties of Inconel 718 alloy butt joints welded using 4 kW Nd:YAG laser. J. Mater. Sci., 2009, 44(17): 4557.
|
| [21] |
Odabasi A., Ünlü N., Göller G., Eruslu M.N. A study on laser beam welding (LBW) technique: effect of heat input on the microstructural evolution of superalloy Inconel 718. Metal. Mater. Trans. A, 2010, 41(9): 2357.
|
| [22] |
Reddy G.M., Murthy C.V.S., Rao K.S., Rao K.P. Improvement of mechanical properties of Inconel 718 electron beam welds: influence of welding techniques and postweld heat treatment. Int. J. Adv. Manuf. Technol., 2009, 43(7): 671.
|
| [23] |
Sivarpasad K., Raman S.G.S. Influence of weld cooling rate on microstructure and mechanical properties of alloy 718 weldments. Metal. Mater. Trans. A, 2008, 39(9): 2115.
|
| [24] |
Vishwakarma K.R., Richards N.L., Chaturvedi M.C. Microstructural analysis of fusion and heat affected zones in electron beam welded ALLVAC® 718PLUSTM superalloy. Mater. Sci. Eng. A, 2008, 480, 2008.
|
| [25] |
Krenz D., Egbewande A.T., Zhang H.R., Ojo O.A. Single pass laser joining of Inconel 718 superalloy with filler. Mater. Sci. Technol., 2011, 27(1): 268.
|
| [26] |
Qian M., Lippold J.C. The effect of annealing twin-generated special grain boundaries on HAZ liquation cracking of nickel-base superalloys. Acta Mater., 2003, 51(12): 3351.
|
| [27] |
Qian M., Lippold J.C. The effect of rejuvenation heat treatments on the repair weldability of wrought alloy 718. Mater. Sci. Eng. A, 2003, 340(1-2): 225.
|
| [28] |
Zhang H.R., Ojo O.A. Non-equilibrium liquid phase dissolution of d phase precipitates in a nickel-based superalloy. Philos. Mag. Lett., 2009, 89(12): 787.
|
| [29] |
Huang C.A., Wang T.H., Lee C.H., Han W.C. A study of the heat-affected zone (HAZ) of an Inconel 718 sheet welded with electron-beam welding (EBW). Mater. Sci. Eng. A, 2005, 398(1-2): 275.
|
| [30] |
Ojo O.A., Richards N.L., Chaturvedi M.C. Contribution of constitutional liquation of gamma prime precipitate to weld HAZ cracking of cast Inconel 738 superalloy. Scripta Mater., 2004, 50(5): 641.
|
| [31] |
Montazeri M., Ghaini F.M. The liquation cracking be havior of IN738LC superalloy during low power Nd:YAG pulsed laser welding. Mater. Charact., 2012, 67, 2012.
|
| [32] |
Ferro P., Zambon A., Bonollo F. Investigation of electron- beam welding in wrought Inconel 706-experimental and numerical analysis. Mater. Sci. Eng. A, 2005, 392(1-2): 94.
|
| [33] |
Lachowicz M., Dudzinski M., Podrez-Radziszewska M. TEM observation of the heat-affected zone in electron beam welded superalloy Inconel 713C. Mater. Charact., 2008, 59(5): 560.
|
| [34] |
Sidhu R.K., Ojo O.A., Chaturvedi M.C. Microstructural analysis of laser-beam-welded directionally solidified INCONEL 738. Metall. Mater. Trans. A, 2007, 38(4): 858.
|
| [35] |
Naffakh Moosavy H., Aboutalebi M.R., Seyedein S.H., Mapelli C. A solidification model for prediction of castability in the precipitation-strengthened nickel-based superalloys. J. Mater. Process. Technol., 2013, 213(11): 1875.
|
| [36] |
Naffakh Moosavy H., Aboutalebi M.R., Seyedein S.H. An analytical algorithm to predict weldability of precipitation- strengthened nickel-base superalloys. J. Mater. Process. Technol., 2012, 212(11): 2210.
|