Phosphate enrichment mechanism in CaO–SiO2–FeO–Fe2O3–P2O5 steelmaking slags with lower binary basicity

Jin-yan Li , Mei Zhang , Min Guo , Xue-min Yang

International Journal of Minerals, Metallurgy, and Materials ›› 2016, Vol. 23 ›› Issue (5) : 520 -533.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2016, Vol. 23 ›› Issue (5) : 520 -533. DOI: 10.1007/s12613-016-1263-7
Article

Phosphate enrichment mechanism in CaO–SiO2–FeO–Fe2O3–P2O5 steelmaking slags with lower binary basicity

Author information +
History +
PDF

Abstract

The addition of silica to steelmaking slags to decrease the binary basicity can promote phosphate enrichment in quenched slag samples. In this study, we experimentally investigated phosphate enrichment behavior in CaO–SiO2–FeO–Fe2O3–P2O5 slags with a P2O5 content of 5.00% and the binary basicity B ranging from 1.0 to 2.0, where the (%Fe tO)/(%CaO) mass percentage ratio was maintained at 0.955. The experimental results are explained by the defined enrichment degree $R_{C_2 S - C_3 P}$ of solid solution 2CaO·SiO2–3CaO·P2O5 (C2S–C3P), where $R_{C_2 S - C_3 P}$ is a component of the developed ion and molecule coexistence theory (IMCT)–N i model for calculating the mass action concentrations N i of structural units in the slags on the basis of the IMCT. The asymmetrically inverse V-shaped relation between phosphate enrichment and binary basicity B was observed to be correlated in the slags under applied two-stage cooling conditions. The maximum content of P2O5 in the C2S–C3P solid solution reached approximately 30.0% when the binary basicity B was controlled at 1.3.

Keywords

phosphates enrichment / mechanisms / steelmaking / slags / basicity

Cite this article

Download citation ▾
Jin-yan Li, Mei Zhang, Min Guo, Xue-min Yang. Phosphate enrichment mechanism in CaO–SiO2–FeO–Fe2O3–P2O5 steelmaking slags with lower binary basicity. International Journal of Minerals, Metallurgy, and Materials, 2016, 23(5): 520-533 DOI:10.1007/s12613-016-1263-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ono H., Inagaki A., Masui T., Narita H., Mitsuo T., Nosaka S., Gohda S. Removal of phosphorus from LD converter slag by floating of dicalcium silicate during solidification. Tetsu-to-Hagané, 1980, 66(6): 1317.

[2]

Morita K., Guo M.X., Oka N., Sano N. Resurrection of the iron and phosphorus resource in steel-making slag. J. Mater. Cycles Waste Manage., 2002, 4(2): 93.

[3]

Takeuchi S., Sano N., Matsushita Y. Separate recovery of iron and phosphorus from BOF slags using Fe–Si alloys. Tetsu-to-Hagané, 1980, 66(14): 2050.

[4]

Sui Z.T., Zhang P.X. Selective precipitating behavior of the boron components from the boron slag. Acta Metall. Sin., 1997, 33(9): 943.

[5]

Wu X.R., Li L.S., Dong Y.C. Influence of P2O5 on crystallization of V concentrating phase in V-bearing steelmaking slag. ISIJ Int., 2007, 47(3): 402.

[6]

Zhang L., Zhang L.N., Wang M.Y., Li G.Q., Sui Z.T. Dynamic oxidation of the Ti-bearing blast furnace slag. ISIJ Int., 2006, 46(3): 458.

[7]

Li J.Y., Zhang M., Guo M., Yang X.M. Enrichment mechanism of phosphate in CaO–SiO2–FeO–Fe2O3–P2O5 steelmaking slags. Metall. Mater. Trans. B, 2014, 45(5): 1666.

[8]

Fix W., Heymann H., Heinke R. Subsolidus relations in the system 2CaO·SiO2–3CaO·P2O5. J. Am. Ceram. Soc., 1969, 52(6): 346.

[9]

Ito K., Yanagisawa M., Sano N. Phosphorus distribution between solid 2CaO·SiO2 and molten CaO–SiO2–FeO–Fe2O3 slags. Tetsu-to-Hagané, 1982, 68(2): 342.

[10]

Inoue R., Suito H. Phosphorous Partition between 2CaO·SiO2 Particles and CaO–SiO2–FetO slags. ISIJ Int., 2006, 46(2): 174.

[11]

Suito H., Inoue R. Behavior of phosphorous transfer from CaO–FetO–P2O5(–SiO2) slag to CaO particles. ISIJ Int., 2006, 46(2): 180.

[12]

Inoue R., Suito H. Mechanism of dephosphorization with CaO–SiO2–FetO slags containing mesoscopic scale 2CaO·SiO2 particles. ISIJ Int., 2006, 46(2): 188.

[13]

Hamano T., Fukagai S., Tsukihashi F. Reaction mechanism between solid CaO and FeOx–CaO–SiO2–P2O5 slag at 1573 K. ISIJ Int., 2006, 46(4): 490.

[14]

Yang X.M., Zhang M., Zhang J.L., Li P.C., Li J.Y., Zhang J. Representation of oxidation ability for metallurgical slags based on the ion and molecule coexistence theory. Steel Res. Int., 2014, 85(3): 347.

[15]

Yang X.M., Duan J.P., Shi C.B., Zhang M., Zhang Y.L., Wang J.C. A thermodynamic model of phosphorus distribution ratio between CaO–SiO2–MgO–FeO–Fe2O3–MnO–Al2O3–P2O5 slags and molten steel during a top–bottom combined blown converter steelmaking process based on the ion and molecule coexistence theory. Metall. Mater. Trans. B, 2011, 42(4): 738.

[16]

Yang X.M., Shi C.B., Zhang M., Duan J.P., Zhang J. A Thermodynamic model of phosphate capacity for CaO–SiO2–MgO–FeO–Fe2O3–MnO–Al2O3–P2O5 slags equilibrated with molten steel during a top–bottom combined blown converter steelmaking process based on the ion and molecule coexistence theory. Metall. Mater. Trans. B, 2011, 42(5): 951.

[17]

Zhang J. Computational Thermodynamics of Metallurgical Melts and Solutions, 2007, Beijing, China, Metallurgical Industry Press

[18]

Drewes E.J., Olette M. Investigations of the effect of siliccon oxide and of the oxidation degree on the phase boundaries. in particular of the miscibility gap, in the system CaO–P2O5–FeO–Fe2O3–SiO2 at 1600C, Arch. Eisenhuttenwes., 1967, 38(3): 163.

[19]

Verein Deutscher Eisenhüttenleute, Slag Atlas, 2nd Ed, Woodhead Publishing Limited, Abington Hall, Abington, Cambridge, CB21 6AH, UK, 1995, p. 63, 138, 139.

[20]

Wang N., Liang Z.G., Chen M., Zou Z.S. Phosphorous enrichment in molten adjusted converter slag: Part I. Effect of adjusting technological conditions. J. Iron Steel Res. Int., 2011, 18(11): 17.

[21]

Wang N., Liang Z.G., Chen M., Zou Z.S. Phosphorous enrichment in molten adjusted converter slag: Part II. Enrichment behavior of phosphorus in CaO–SiO2–FeOx–P2O5 molten slag. J. Iron Steel Res. Int., 2011, 18(12): 22.

[22]

Chen J.X. Handbook of Common Figures, Tables and Data for Steelmaking, 1984, Beijing, Metallurgical Industry Press

[23]

Pahlevani F., Kitamura S., Shibata H., Maruoka N. Distribution of P2O5 between solid solution of 2CaO·SiO2–3CaO·P2O5 and liquid phase. ISIJ Int., 2010, 50(6): 822.

AI Summary AI Mindmap
PDF

150

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/