Effect of SrCO3 addition on the dynamic compressive strength of ZTA

Ali Arab , Roslan Ahmad , Zainal Arifin Ahmad

International Journal of Minerals, Metallurgy, and Materials ›› 2016, Vol. 23 ›› Issue (4) : 481 -489.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2016, Vol. 23 ›› Issue (4) : 481 -489. DOI: 10.1007/s12613-016-1259-3
Article

Effect of SrCO3 addition on the dynamic compressive strength of ZTA

Author information +
History +
PDF

Abstract

Ceramic parts usually experience dynamic load in armor applications. Therefore, studying the dynamic behaviors of ceramics is important. Limited data are available on the dynamic behaviors of ceramics; thus, it is helpful to predict the dynamic strength of ceramics on the basis of their mechanical properties. In this paper, the addition of SrCO3 into zirconia-toughened alumina (ZTA) was demonstrated to improve the fracture toughness of ZTA due to the formation of the SrAl12O19 (SA6) phase. The porosity of ZTA was found to be increased by the addition of SrCO3. These newly formed pores served as the nucleation sites of cracks under dynamic load; these cracks eventually coalesced to form damaged zones in the samples. Although the K IC values of the samples were improved, the dynamic strength was not enhanced because of the increase in porosity; in fact, the dynamic strength of ZTA ceramics decreased with the addition of SrCO3.

Keywords

ceramics / strontium carbonate / dynamic properties / fracture toughness / compressive strength

Cite this article

Download citation ▾
Ali Arab, Roslan Ahmad, Zainal Arifin Ahmad. Effect of SrCO3 addition on the dynamic compressive strength of ZTA. International Journal of Minerals, Metallurgy, and Materials, 2016, 23(4): 481-489 DOI:10.1007/s12613-016-1259-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Azhar A.Z.A., Choong L.C., Mohamed H., Ratnam M.M., Ahmad Z.A. Effects of Cr2O3 addition on the mechanical properties. microstructure and wear performance of zirconia-toughened-alumina (ZTA) cutting inserts, J. Alloys Compd., 2012, 513, 91.

[2]

Azhar A.Z.A., Mohamad H., Ratnam M.M., Ahmad Z.A. The effects of MgO addition on microstructure. mechanical properties and wear performance of zirconia-toughened alumina cutting inserts. J. Alloys Compd., 2010, 497(1-2): 316.

[3]

Azhar A.Z.A., Mohamad H., Ratnam M.M., Ahmad Z.A. Effect of MgO particle size on the microstructure. mechanical properties and wear performance of ZTA–MgO ceramic cutting inserts, Int. J. Refract. Met. Hard Mater., 2011, 29(4): 456.

[4]

Mitra N.K., Das S., Maitra S., Sengupta U., Basumajumdar A. Effect of CeO2 on the sintering behaviour of zirconia–alumina composite. Ceram. Int., 2002, 28(8): 827.

[5]

Rejab N.A., Azhar A.Z.A., Ratnam M.M., Ahmad Z.A. The effects of CeO2 addition on the physical. microstructural and mechanical properties of yttria stabilized zirconia toughened alumina (ZTA), Int. J. Refract. Met. Hard Mater., 2013, 36, 162.

[6]

Sktani Z.D.I., Azhar A.Z.A., Ratnam M.M., Ahmad Z.A. The influence of in-situ formation of hibonite on the properties of zirconia toughened alumina (ZTA) composites. Ceram. Int., 2014, 40(4): 6211.

[7]

Zhou Z.H., Wang Z.H., Yi Y., Lan J.S., Jiang S.Q., Wang G. Experimental study on impact resistance and mechanical characteristics of low-temperature sintered Al2O3–ZrO2 composites with anti-sandwich structure. Powder Technol., 2014, 256, 239.

[8]

Nayak N., Banerjee A., Sivaraman P. Ballistic impact response of ceramic-faced aramid laminated composites against 7. 62 mm armour piercing projectiles. Defence Sci. J., 2013, 63(4): 369.

[9]

Shih C.J., Meyers M.A., Nesterenko V.F., Chen S.J. Damage evolution in dynamic deformation of silicon carbide. Acta Mater., 2000, 48(9): 2399.

[10]

Wells J., Rupert N., Neal M. Impact damage analysis in a level III flexible body armor vest using XCT diagnostics. Ceram. Eng. Sci. Proc., 2009, 30(5): 171.

[11]

Woodward R.L., Gooch W.A., O’Donnell R.G., Perciballi W.J., Baxter B.J., Pattie S.D. A study of fragmentation in the ballistic impact of ceramics. Int. J. Impact Eng., 1994, 15(5): 605.

[12]

Zhang X.F., Li Y.C. On the comparison of the ballistic performance of 10% zirconia toughened alumina and 95% alumina ceramic target. Mater. Des., 2010, 31(4): 1945.

[13]

Arab A., Ahmad R., Ahmad Z.A.B. Review on impact study on ceramic material. CJASR, 2014, 3(4): 44.

[14]

Ravichandran G., Subhash G. A micromechanical model for high strain rate behavior of ceramics. Int. J. Solids Struct., 1995, 32(17-18): 2627.

[15]

Karandikar P.G., Evans G., Wong S., Aghajanian M.K., Sennett M. A review of ceramics for armor applications. Ceram. Eng. Sci. Proc., 2009, 29(6): 163.

[16]

Curran D.R., Seaman L., Cooper T., Shockey D.A. Micromechanical model for comminution and granular flow of brittle material under high strain rate application to penetration of ceramic targets. Int. J. Impact Eng., 1993, 13(1): 53.

[17]

Fernández-Fdz D., Zaera R., Fernández-Sáez J. A constitutive equation for ceramic materials used in lightweight armors. Comput. Struct., 2011, 89(23-24): 2316.

[18]

Hu G., Chen C.Q., Ramesh K.T., McCauley J.W. Mechanisms of dynamic deformation and dynamic failure in aluminum nitride. Acta Mater., 2012, 60(8): 3480.

[19]

Johnson G.R., Holmquist T.J. An improved computational constitutive model for brittle materials. AIP Conf. Proc., 1994, 309, 981.

[20]

Holmquist T.J., Johnson G.R. Response of silicon carbide to high velocity impact. J. Appl. Phys., 2002, 91(9): 5858.

[21]

Kimberley J., Ramesh K.T., Daphalapurkar N.P. A scaling law for the dynamic strength of brittle solids. Acta Mater., 2013, 61(9): 3509.

[22]

Rajendran A.M. Modeling the impact behavior of AD85 ceramic under multiaxial loading. Int. J. Impact Eng., 1994, 15(6): 749.

[23]

Ashby M.F., Sammis C.G. The damage mechanics of brittle solids in compression. Pure Appl. Geophys., 1990, 133(3): 489.

[24]

Hu G., Ramesh K.T., Cao B., McCauley J.W. The compressive failure of aluminum nitride considered as a model advanced ceramic. J. Mech. Phys. Solids, 2011, 59(5): 1076.

[25]

Nemat-Nasser S., Horii H. Compression-induced nonplanar crack extension with application to splitting, exfoliation, and rockburst. J. Geophys. Res., 1982, 87(B8): 6805.

[26]

Paliwal B., Ramesh K. An interacting micro-crack damage model for failure of brittle materials under compression. J. Mech. Phys. Solids, 2008, 56(3): 896.

[27]

Wang H., Ramesh K.T. Dynamic strength and fragmentation of hot-pressed silicon carbide under uniaxial compression. Acta Mater., 2004, 52(2): 355.

[28]

Maiti K., Sil A. Microstructural relationship with fracture toughness of undoped and rare earths (Y,La) doped Al2O3–ZrO2 ceramic composites. Ceram. Int., 2011, 37(7): 2411.

[29]

Liu X.Q., Chen X.M. Effects of Sr2Nb2O7 additive on microstructure and mechanical properties of 3Y–TZP/Al2O3 ceramics. Ceram. Int., 2002, 28(2): 209.

[30]

Magnani G., Brillante A. Effect of the composition and sintering process on mechanical properties and residual stresses in zirconia–alumina composites. J. Eur. Ceram. Soc., 2005, 25(15): 3383.

[31]

Vishista K., Gnanam F.D. Microstructural development of SrAl12O19 in alumina-strontia composites. J. Eur. Ceram. Soc., 2009, 29(1): 77.

[32]

Cutler R.A., Mayhew R.J., Prettyman K.M., Virkar A. High-toughness Ce-TZP/Al2O3 ceramics with improved hardness and strength. J. Am. Ceram. Soc., 1991, 74(1): 179.

[33]

Chen P.L., Chen I.W. In-situ alumina/aluminate platelet composites. J. Am. Ceram. Soc., 1992, 75(9): 2610.

[34]

Guo R., Guo D., Chen Y., Yang Z., Yuan Q. In situ formation of LaAl11O18 rodlike particles in ZTA ceramics and effect on the mechanical properties. Ceram. Int., 2002, 28(7): 699.

[35]

Oungkulsolmongkol T., Salee-Art P., Buggakupta W. Hardness and fracture toughness of alumina-based particulate composites with zirconia and strontia additives. J. Met. Mater. Miner., 2010, 20(2): 71.

[36]

Arab A., Ahmad Z.A., Ahmad R. Effects of yttria stabilized zirconia (3Y-TZP) percentages on the ZTA dynamic mechanical properties. Int. J. Refract. Met. Hard Mater., 2015, 50, 157.

[37]

Huang S., Binnerl J., Vaidhyanathan B., Brownz P., Hampson C., Spacie C. Development of nano zirconia toughened alumina for ceramic armor applications. Adv. Ceram. Armor VII Ceram. Eng. Sci. Proc., 2011, 32, 103.

[38]

Niihara K., Morena R., Hasselman D.P.H. Evaluation of KIc of brittle solids by the indentation method with low crack-to-indent ratios. J. Mater. Sci. Lett., 1982, 1(1): 13.

[39]

S. Sarva and S. Nemat-Nasser, Dynamic compressive strength of silicon carbide under uniaxial compression. Mater. Sci. Eng. A, 317(2001), No. 1-2, p. 140.

[40]

Frew D.J., Forrestal M.J., Chen W. Pulse shaping techniques for testing brittle materials with a split Hopkinson pressure bar. Exp. Mech., 2002, 42(1): 93.

[41]

Lifshitz J.M., Leber H. Data processing in the split Hopkinson pressure bar tests. Int. J. Impact Eng., 1994, 15(6): 723.

[42]

V.K. Singh and K.K. Sharma, Low-temperature synthesis of calcium hexa-aluminate, J. Am. Ceram. Soc., 85(2002), No. 4, p. 769.

[43]

Vishista K., Gnanam F.D. Effect of strontia on the densification and mechanical properties of sol–gel alumina. Ceram. Int., 2006, 32(8): 917.

[44]

Vishista K., Gnanam F.D., Awaji H. Sol–gel synthesis and characterization of alumina–calcium hexaaluminate composites. J. Am. Ceram. Soc., 2005, 88(5): 1175.

[45]

Huang C.Y., Subhash G., Vitton S.J. A dynamic damage growth model for uniaxial compressive response of rock aggregates. Mech. Mater., 2002, 34(5): 267.

[46]

Paliwal B., Ramesh K.T., McCauley J.W. Direct observation of the dynamic compressive failure of a transparent polycrystalline ceramic (AlON). J. Am. Ceram. Soc, 2006, 89(7): 2128.

[47]

Chen X.D., Wu S.X., Zhou J.K. Influence of porosity on compressive and tensile strength of cement mortar. Construct. Build. Mater., 2013, 40, 869.

AI Summary AI Mindmap
PDF

118

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/