Kinetics and formation mechanisms of intragranular ferrite in V-N microalloyed 600 MPa high strength rebar steel

Jing Zhang , Fu-ming Wang , Chang-rong Li

International Journal of Minerals, Metallurgy, and Materials ›› 2016, Vol. 23 ›› Issue (4) : 417 -424.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2016, Vol. 23 ›› Issue (4) : 417 -424. DOI: 10.1007/s12613-016-1251-y
Article

Kinetics and formation mechanisms of intragranular ferrite in V-N microalloyed 600 MPa high strength rebar steel

Author information +
History +
PDF

Abstract

To systematically investigate the kinetics and formation mechanisms of intragranular ferrite (IGF), isothermal heat treatment in the temperature range of 450°C to 600°C with holding for 30 s to 300 s, analysis of the corresponding microstructures, and observation of the precipitated particles were conducted in V-N microalloyed 600 MPa high strength rebar steel. The potency of V(C,N) for IGF nucleation was also analyzed statistically. The results show that the dominant microstructure transforms from bainite (B) and acicular ferrite (AF) to grain boundary ferrite (GBF), intragranular polygonal ferrite (IPF), and pearlite (P) as the isothermal temperature increases from 450°C to 600°C. When the holding time at 600°C is extended from 30 s to 60 s, 120 s, and 300 s, the GBF content ranges from 6.0vol% to 6.5vol% and the IPF content increases from 0.5vol% to 2.8vol%, 13.1vol%, and 13.5vol%, respectively, because the ferrite transformation preferentially occurs at the grain boundaries and then occurs at the austenite grains. Notably, V(C,N) particles are the most effective nucleation site for the formation of IPF, accounting for 51% of the said formation.

Keywords

high strength steel / ferrite / kinetics / formation mechanisms / nucleation / microalloying

Cite this article

Download citation ▾
Jing Zhang, Fu-ming Wang, Chang-rong Li. Kinetics and formation mechanisms of intragranular ferrite in V-N microalloyed 600 MPa high strength rebar steel. International Journal of Minerals, Metallurgy, and Materials, 2016, 23(4): 417-424 DOI:10.1007/s12613-016-1251-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Shim J.H., Oh Y.J., Suh J.Y., Cho Y.W., Shim J.D., Byun J.S., Lee D.N. Ferrite nucleation potency of non-metallic inclusions in medium carbon steels. Acta Mater., 2001, 49(12): 2115.

[2]

Hu J., Du L.X., Wang J.J., Gao C.R. Effect of welding heat input on microstructures and toughness in simulated CGHAZ of V-N high strength steel. Mater. Sci. Eng. A, 2013, 577, 161.

[3]

Wan X.L., Wu K.M., Huang G., Wei R., Cheng L. In situ observation of austenite grain growth behavior in the simulated coarse-grained heat-affected zone of Ti-microalloyed steels. Int. J. Miner. Metall. Mater., 2014, 21(9): 878.

[4]

Hu J., Du L.X., Wang J.J. Effect of V on intragranular ferrite nucleation of high Ti bearing steel. Scripta Mater., 2013, 68(12): 953.

[5]

Hu J., Du L.X., Wang J.J., Xie H., Gao C.R., Misra R.D.K. Structure-mechanical property relationship in low carbon microalloyed steel plate processed using controlled rolling and two-stage continuous cooling. Mater. Sci. Eng. A, 2013, 585, 197.

[6]

Capdevila C., García-Mateo C., Chao J., Caballero F.G. Effect of V and N precipitation on acicular ferrite formation in sulfur-lean vanadium steels. Metall. Mater. Trans. A, 2009, 40(3): 522.

[7]

Miyamoto G., Hori R., Poorganji B., Furuhara T. Interphase precipitation of VC and resultant hardening in V-added medium carbon steels. ISIJ Int., 2011, 51(10): 1733.

[8]

Zeng Y.P., Zhu P.Y., Tong K. Effect of microstructure on the low temperature toughness of high strength pipeline steels. Int. J. Miner. Metall. Mater., 2015, 22(3): 254.

[9]

Shi L., Yan Z.S., Liu Y.C., Yang X., Zhang C., Li H.J. Effect of acicular ferrite on banded structures in low-carbon microalloyed steel. Int. J. Miner. Metall. Mater., 2014, 21(12): 1167.

[10]

Medina S.F., Gómez M., Rancel L. Grain refinement by intragranular nucleation of ferrite in a high nitrogen content vanadium microalloyed steel. Scripta Mater., 2008, 58(12): 1110.

[11]

Zhang S.H., Hattori N., Enomoto M., Tarui T. Ferrite nucleation at ceramic/austenite interfaces. ISIJ Int., 1996, 36(10): 1301.

[12]

Furuhara T., Yamaguchi J., Sugita N., Miyamoto G., Maki T. Nucleation of proeutectoid ferrite on complex precipitates in austenite. ISIJ Int., 2003, 43(10): 1630.

[13]

Zhang D., Terasaki H., Komizo Y. In situ observation of the formation of intragranular acicular ferrite at non-metallic inclusions in C-Mn steel. Acta Mater., 2010, 58(4): 1369.

[14]

Yamamoto K., Hasegawa T., Takamura J. Effect of boron on intra-granular ferrite formation in Ti-oxide bearing steels. ISIJ Int., 1996, 36(1): 80.

[15]

Tomita Y., Saito N., Tsuzuki T., Tokunaga Y., Okamoto K. Improvement in HAZ toughness of steel by TiN-MnS addition. ISIJ Int., 1994, 34(10): 829.

[16]

Pan T., Yang Z.G., Zhang C., Bai B.Z., Fang H.S. Kinetics and mechanisms of intragranular ferrite nucleation on non-metallic inclusions in low carbon steels. Mater. Sci. Eng. A, 2006, 438-440, 1128.

[17]

Khalid F.A. Precipitation and compositional changes in the structural phases of microalloyed automotive steels. Mater. Sci. Eng. A, 2002, 325(1-2): 281.

[18]

Ishikawa F., Takahashi T. The formation of intragranular ferrite plates in medium-carbon steels for hot-forging and its effect on the toughness. ISIJ Int., 1995, 35(9): 1128.

[19]

Madariaga I., Gutiérrez I. Role of the particle-matrix interface on the nucleation of acicular ferrite in a medium carbon microalloyed steel. Acta Mater., 1999, 47(3): 951.

[20]

Ishikawa F., Takahashi T., Ochi T. Intragranular ferrite nucleation in medium-carbon vanadium steels. Metall. Mater. Trans. A, 1994, 25(5): 929.

AI Summary AI Mindmap
PDF

105

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/