Influence of growth conditions on the electrochemical synthesis of SnS thin films and their optical properties

Hosein Kafashan , Farid Jamali-Sheini , Reza Ebrahimi-Kahrizsangi , Ramin Yousefi

International Journal of Minerals, Metallurgy, and Materials ›› 2016, Vol. 23 ›› Issue (3) : 348 -357.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2016, Vol. 23 ›› Issue (3) : 348 -357. DOI: 10.1007/s12613-016-1244-x
Article

Influence of growth conditions on the electrochemical synthesis of SnS thin films and their optical properties

Author information +
History +
PDF

Abstract

Tin sulfide (SnS) thin films were prepared by electrodeposition onto fluorine-doped tin oxide (FTO) glass substrates using an aqueous solution containing SnCl2 and Na2S2O3 at various deposition potentials (E) and bath concentrations. The pH value and temperature of the solution were kept constant. The deposited films were characterized using X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), photoluminescence (PL), and ultraviolet–visible (UV–Vis) spectroscopy. The FESEM images demonstrated that changes in the deposition potential (E) and solution concentration led to marked changes in the morphology of the deposited SnS films. Energy-dispersive X-ray analysis (EDXA) results showed that the Sn/S atomic ratio strongly depended on both the solution concentration and the deposition potential. To obtain an Sn/S atomic ratio approximately equal to 1, the optimal Sn2+/S2O3 2− molar ratio and E parameter were 1/8 and −1.0 V, respectively. The XRD patterns showed that the synthesized SnS was obviously polycrystalline, with an orthorhombic structure. The effects of the variations of bath concentration and deposition potential on the band-gap energy (E g) were studied using PL and UV–Vis experiments. The PL spectra of all the SnS films contained two peaks in the visible region and one peak in the infrared (IR) region. The UV–Vis spectra showed that the optical band-gap energy varies from 1.21 to 1.44 eV.

Keywords

tin sulfide / thin films / electrodeposition / structural properties / optical properties

Cite this article

Download citation ▾
Hosein Kafashan, Farid Jamali-Sheini, Reza Ebrahimi-Kahrizsangi, Ramin Yousefi. Influence of growth conditions on the electrochemical synthesis of SnS thin films and their optical properties. International Journal of Minerals, Metallurgy, and Materials, 2016, 23(3): 348-357 DOI:10.1007/s12613-016-1244-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ogah O.E., Zoppi G., Forbes I., Miles R.W. Thin films of tin sulphide for use in thin film solar cell devices. Thin Solid Films, 2009, 517(7): 2485.

[2]

Ogah O.E., Reddy K.R., Zoppi G., Forbes I., Miles R.W. Annealing studies and electrical properties of SnS-based solar cell. Thin Solid Films, 2011, 519(21): 7425.

[3]

Sugiyama M., Reddy K.T.R., Revathi N., Shimamoto Y., Murata Y. Band offset of SnS solar cell structure measured by X-ray photoelectron spectroscopy. Thin Solid Films, 2011, 519(21): 7429.

[4]

Malaquias J., Fernandes P.A., Salomé P.M.P., da Cunha A.F. Assessment of the potential of tin sulphide thin films prepared by sulphurization of metallic precursor as cell absorber. Thin Solid Films, 2011, 519(21): 7416.

[5]

Dussan A., Mesa F., Gordillo G. Effect of substitution of Sn for Bi on structural and electrical transport properties of SnS thin films. J. Mater. Sci., 2010, 45(9): 2403.

[6]

Gao C., Shen H.L., Sun L., Shen Z. Chemical bath deposition of SnS films with different crystal structures. Mater. Lett., 2011, 65(9): 1413.

[7]

Jamali-Sheini F., Yousefi R., Bakr N. A., Cheraghizade M., Sookhakian M., Huang N. M. Highly efficient photo-degradation of methyl blue and band gap shift of SnS nanoparticles under different sonication frequencies. Mater. Sci. Semicond. Process., 2015, 32(1): 172.

[8]

Yue G.H., Peng D.L., Yan P.X., Wang L.S., Wang W., Luo X.H. Structure and optical properties of SnS thin film prepared by pulse electrodeposition. J. Alloys Compd., 2009, 468(1): 254.

[9]

Cheng S.Y., He Y.J., Chen G.N. Structure and properties of SnS films prepared by electro-deposition in presence of EDTA. Mater. Chem. Phys., 2008, 110(2-3): 449.

[10]

Mathews N.R., Anaya H.B.M., Cortes-Jacome M.A., Angeles-Chavez C., Toledo-Antonio J.A. Tin sulfide thin films by pulse electrodeposition: structural, morphological and optical properties. J. Electrochem. Soc., 2010, 157(3): H337.

[11]

Lu P.M., Jia H.J., Yang Y.L., Cheng S.Y. Effect of duty cycle on properties of pulse-electro-deposited SnS:Ag thin films. Semicond. Photonics Technol., 2010, 16(4): 132.

[12]

Reddy N.K., Reddy K.T.R. Electrical properties of spray pyrolytic tin sulfide films. Solid State Electron., 2005, 49(6): 902.

[13]

Noguchi H., Setiyadi A., Tanamura H., Nagatomo T., Omoto O. Characterization of vacuum-evaporated tin sulfide film for solar cell materials. Sol. Energy Mater. Sol. Cells, 1994, 35(1): 325.

[14]

Ghosh B., Bhattacharjee R., Banerjee P., Das S. Structural and optoelectronic properties of vacuum evaporated SnS thin films annealed in argon ambient. Appl. Surf. Sci., 2011, 257(8): 3670.

[15]

Reddy N.K., Reddy K.T.R. Preparation and characterisation of sprayed tin sulphide films grown at different precursor concentrations. Mater. Chem. Phys., 2007, 102(1): 13.

[16]

Calixto-Rodriguez M., Martinez H., Sanchez-Juarez A., Campos-Alvarez J., Tiburcio-Silver A., Calixto M.E. Structural, optical and electrical properties of tin sulfide thin films grown by spray pyrolysis. Thin Solid Films, 2009, 517(7): 2497.

[17]

Hankare P.P., Jadhav A.V., Chate P.A., Rathod K.C., Chavan P.A., Ingole S.A. Synthesis and characterization of tin sulphide thin films grown by chemical bath deposition technique. J. Alloys Compd., 2008, 463(1-2): 581.

[18]

Avellaneda D., Delgado G., Nair M.T.S., Nair P.K. Structural and chemical transformations in SnS thin films used in chemically deposited photovoltaic cells. Thin Solid Films, 2007, 515(15): 5771.

[19]

Zainal Z., Hussein M.Z., Ghazali A. Cathodic electrodeposition of SnS thin films from aqueous solution. Sol. Energy Mater. Sol. Cells, 1996, 40(4): 347.

[20]

Ghazali A., Zainal Z., Hussein M.Z., Kassim A. Cathodic electrodeposition of SnS in the presence of EDTA in aqueous media. Sol. Energy Mater. Sol. Cells, 1998, 55(3): 237.

[21]

Niknia F., Jamali-Sheini F., Yousefi R. Photocurrent properties of undoped and Pb-doped SnS nanostructures grown using electrodeposition method. J. Electron. Mater., 2015, 44(12): 4734.

[22]

Jiang F., Shen H., Gao C., Liu B., Lin L., Shen Z. Preparation and properties of SnS film grown by two-stage process. Appl. Surf. Sci., 2011, 257(11): 4901.

[23]

Reddy K.T.R., Reddy P.P., Datta P.K., Miles R.W. Formation of polycrystalline SnS layer by two-step process. Thin Solid Films, 2002, 403-404(1): 116.

[24]

Hartman K., Johnson J.L., Bertoni M.I., Recht D., Aziz M.J., Scarpulla M.A., Buonassisi T. SnS thin-films by RF sputtering at room temperature. Thin Solid Films, 2011, 519(21): 7421.

[25]

Cheng S.Y., Chen G.N., Chen Y.Q., Huang C.C. Effect of deposition potential and bath temperature on the electrodeposition of SnS film. Opt. Mater., 2006, 29(4): 439.

[26]

Cheng S.Y., Chen Y.Q., Huang C.C., Chen G.N. Characterization of SnS films prepared by constant-current electro- deposition. Thin Solid Films, 2006, 500(1-2): 96.

[27]

Zhao Y.B., Zhang Z.J., Dang H.X., Liu W.M. Synthesis of tin sulfide nanoparticles by a modified solution dispersion method. Mater. Sci. Eng. B, 2004, 113(2): 175.

[28]

Devika M., Reddy N.K., Prashantha M., Ramesh K., Reddy S.V., Hahn Y.B., Gunasekhar K.R. The physical properties of SnS films grown on lattice-matched and amorphous substrates. Phys. Status Solidi A, 2010, 207(8): 1864.

[29]

Ghosh B., Das M., Banerjee P., Das S. Fabrication and optical properties of SnS thin films by SILAR method. Appl. Surf. Sci., 2008, 254(20): 6436.

[30]

Khorsand Zak A., Majid W.H.A., Mahmoudian M.R., Darroudi M., Yousefi R. Starch-stabilized synthesis of ZnO nanopowders at low temperature and optical properties study. Adv. Powder Technol., 2013, 24(3): 618.

[31]

Yousefi R., Cheraghizade M., Jamali-Sheini F., Basirun W.J., Huang N.M. Effect of hydrogen gas on the growth process of PbS nanorods grown by a CVD method. Curr. Appl. Phys., 2014, 14(8): 1031.

AI Summary AI Mindmap
PDF

133

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/