Coarsening behavior of MX carbonitrides in type 347H heat-resistant austenitic steel during thermal aging

Ying-hui Zhou , Chen-xi Liu , Yong-chang Liu , Qian-ying Guo , Hui-jun Li

International Journal of Minerals, Metallurgy, and Materials ›› 2016, Vol. 23 ›› Issue (3) : 283 -293.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2016, Vol. 23 ›› Issue (3) : 283 -293. DOI: 10.1007/s12613-016-1237-9
Article

Coarsening behavior of MX carbonitrides in type 347H heat-resistant austenitic steel during thermal aging

Author information +
History +
PDF

Abstract

In this work, the growth kinetics of MX (M = metal, X = C/N) nanoprecipitates in type 347H austenitic steel was systematically studied. To investigate the coarsening behavior and the growth mechanism of MX carbonitrides during long-term aging, experiments were performed at 700, 800, 850, and 900°C for different periods (1, 24, 70, and 100 h). The precipitation behavior of carbonitrides in specimens subjected to various aging conditions was explored using carbon replicas and transmission electron microscopy (TEM) observations. The corresponding sizes of MX carbonitrides were measured. The results demonstrates that MX carbonitrides precipitate in type 347H austenitic steel as Nb(C,N). The coarsening rate constant is time-independent; however, an increase in aging temperature results in an increase in coarsening rate of Nb(C,N). The coarsening process was analyzed according to the calculated diffusion activation energy of Nb(C,N). When the aging temperature was 800–900°C, the mean activation energy was 294 kJ·mol−1, and the coarsening behavior was controlled primarily by the diffusion of Nb atoms.

Keywords

austenitic steel / heat resistance / carbonitrides / coarsening / nanoparticles / diffusion / thermal aging

Cite this article

Download citation ▾
Ying-hui Zhou, Chen-xi Liu, Yong-chang Liu, Qian-ying Guo, Hui-jun Li. Coarsening behavior of MX carbonitrides in type 347H heat-resistant austenitic steel during thermal aging. International Journal of Minerals, Metallurgy, and Materials, 2016, 23(3): 283-293 DOI:10.1007/s12613-016-1237-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Prat O., Garcia J., Rojas D., Sanhueza J.P., Camurri C. Study of nucleation, growth and coarsening of precipitates in a novel 9% Cr heat resistant steel: experimental and modeling. Mater. Chem. Phys., 2014, 143(2): 754.

[2]

Chilukuru H., Durst K., Wadekar S., Schwienheer M., Scholz A., Berger C., Mayer K.H., Blum W. Coarsening of precipitates and degradation of creep resistance in tempered martensite steels. Mater. Sci. Eng. A, 2009, 510-511, 81.

[3]

Hong S.M., Kim M.Y., Min D.J., Lee K.H., Shim J.H., Kim D.I., Suh J.Y., Jung W.S., Choi I.S. Unraveling the origin of strain-induced precipitation of M23C6 in the plastically deformed 347 austenite stainless steel. Mater. Charact., 2014, 94, 7.

[4]

Li H.B., Jiang Z.H., Zhang Z.R., Cao Y., Yang Y. Intergranular corrosion behavior of high nitrogen austenitic stainless steel. Int. J. Miner. Metall. Mater., 2009, 16(6): 654.

[5]

Hu X.B., Li L., Wu X.C., Zhang M. Coarsening behavior of M23C6 carbides after ageing or thermal fatigue in AISI H13 steel with niobium. Int. J. Fatigue, 2006, 28(3): 175.

[6]

Xiao F.R., Cao Y.B., Qiao G.Y., Zhang X.B., Liao B. Effect of Nb solute and NbC precipitates on dynamic or static recrystallization in Nb steels. J. Iron Steel Res. Int., 2012, 19(11): 52.

[7]

Tan L., Byun T.S., Katoh Y., Snead L.L. Stability of MX-type strengthening nanoprecipitates in ferritic steels under thermal aging, stress and ion irradiation. Acta Mater., 2014, 71, 11.

[8]

Xu Y.T., Wang M.J., Wang Y., Gu T., Chen L., Zhou X., Ma Q., Liu Y.M., Huang J. Study on the nucleation and growth of Laves phase in a 10% Cr martensite ferritic steel after long-term aging. J. Alloys Compd., 2015, 621, 93.

[9]

Shi F., Wang L.J., Cui W.F., Liu C.M. Precipitation kinetics of Cr2N in high nitrogen austenitic stainless steel. J. Iron Steel Res. Int., 2008, 15(6): 72.

[10]

Zhu N.Q., Lu L., He Y.L., Li L., Lu X.G. Coarsening of M23C6 precipitates in an Fe-Cr-C ternary alloy. J. Iron Steel Res. Int., 2012, 19(9): 62.

[11]

Gustafson Hättestrand M. Coarsening of precipitates in an advanced creep resistant 9% chromium steel: quantitative microscopy and simulations. Mater. Sci. Eng. A, 2002, 333(1-2): 279.

[12]

Gustafson Coarsening of TiC in austenitic stainless steel: experiments and simulations in comparison. Mater. Sci. Eng. A, 2000, 287(1): 52.

[13]

Miao K., He Y.L., Zhu N.Q., Wang J.J., Lu X.G., Li L. Coarsening of carbides during different heat treatment conditions. J. Alloys Compd., 2015, 622, 513.

[14]

Bullard J.W. Numerical simulations of transient-stage Ostwald ripening and coalescence in two dimensions. Mater. Sci. Eng. A, 1997, 238(1): 128.

[15]

Ghosh S. Kinetic study on the coarsening behaviour of equilibrium phases in Nb alloyed ferritic stainless steels at 700°C. Mater. Chem. Phys., 2010, 124(1): 13.

[16]

Prat O., Garcia J., Rojas D., Carrasco C., Kaysser-Pyzalla A.R. Investigations on coarsening of MX and M23C6 precipitates in 12% Cr creep resistant steels assisted by computational thermodynamics. Mater. Sci. Eng. A, 2010, 527(21-22): 5976.

[17]

Moon J.N., Jeong H.C., Lee J.B., Lee C.H. Particle coarsening kinetics considering critical particle size in the presence of multiple particles in the heat-affected zone of a weld. Mater. Sci. Eng. A, 2008, 483-484(1-2): 633.

[18]

Huang S.G., Liu R.L., Li L., Vleugels J. NbC as grain growth inhibitor and carbide in WC-Co hardmetals. Int. J. Refract. Met. Hard Mater., 2008, 26(5): 389.

[19]

Li H.B., Jiang Z.H., Feng H., Ma Q.F., Zhan D.P. Aging precipitation behavior of 18Cr-16Mn-2Mo-1.1N high nitrogen austenitic stainless steel and its influences on mechanical properties. J. Iron Steel Res. Int., 2012, 19(8): 43.

[20]

Tsujikawa M., Yamauchi N., Ueda N., Sone T., Hirose Y. Behavior of carbon in low temperature plasma nitriding layer of austenitic stainless steel. Surf. Coat. Technol., 2005, 193(1-3): 309.

[21]

Chilukuru H., Durst K., Wadekar S., Schwienheer M., Scholz A., Berger C., Mayer K.H., Blum W. Coarsening of precipitates and degradation of creep resistance in tempered martensite steels. Mater. Sci. Eng. A, 2009, 510-511, 81.

[22]

Xia Z.X., Zhang C., Yang Z.G. Control of precipitation behavior in reduced activation steels by intermediate heat treatment. Mater. Sci. Eng. A, 2011, 528(22-23): 6764.

[23]

Sawada K., Kubo K., Abe F. Creep behavior and stability of MX precipitates at high temperature in 9Cr-0.5Mo-1.8W-VNb steel. Mater. Sci. Eng. A, 2001, 319-321, 784.

[24]

Tamura M., Sakasegawa H., Kohyama A., Esaka H., Shinozuka K. Creep deformation of iron strengthened by MX type particles. J. Nucl. Mater., 2004, 329(1): 328.

[25]

Tamura M., Sakasegawa H., Kohyama A., Esaka H., Shinozuka K. Effect of MX type particles on creep strength of ferritic steel. J. Nucl. Mater., 2003, 321(2-3): 288.

[26]

Onizawa T., Wakai T., Ando M., Aoto K. Effect of V and Nb on precipitation behavior and mechanical properties of high Cr steel. Nucl. Eng. Des., 2008, 238(2): 408.

[27]

Prat O., Garcia J., Rojas D., Carrasco C., Kaysser-Pyzalla A.R. Investigations on coarsening of MX and M23C6 precipitates in 12% Cr creep resistant steels assisted by computational thermodynamics. Mater. Sci. Eng. A, 2010, 527(21-22): 5976.

[28]

gren J. A. A revised expression for the diffusivity of carbon in binary FeC austenite. Scripta Metall. Mater., 1986, 20(11): 1507.

[29]

Krielaart G.P., van der Zwaag S. Kinetics of λ-a phase transformation in Fe-Mn alloys containing low manganese. Mater. Sci. Technol., 1998, 14(1): 10.

[30]

Gale W.F., Totemeir T.C. Smithells Metals Reference Book, 2004 13.

[31]

Maalekian M., Radis R., Militzer M., Moreau A., Poole W.J. In situ measurement and modelling of austenite grain growth in a Ti/Nb microalloyed steel. Acta Mater., 2012, 60(3): 1015.

AI Summary AI Mindmap
PDF

130

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/