Synthesis and application of bilayer-surfactant-enveloped Fe3O4 nanoparticles: water-based bilayer-surfactant-enveloped ferrofluids

Bai-yi Chen , Jian-hui Qiu , Hui-xia Feng

International Journal of Minerals, Metallurgy, and Materials ›› 2016, Vol. 23 ›› Issue (2) : 234 -240.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2016, Vol. 23 ›› Issue (2) : 234 -240. DOI: 10.1007/s12613-016-1231-2
Article

Synthesis and application of bilayer-surfactant-enveloped Fe3O4 nanoparticles: water-based bilayer-surfactant-enveloped ferrofluids

Author information +
History +
PDF

Abstract

Superparamagnetic carbon-coated Fe3O4 nanoparticles with high magnetization (85 emu·g-1) and high crystallinity were synthesized using polyethylene glycol-4000 (PEG (4000)) as a carbon source. Fe3O4 water-based bilayer-surfactant-enveloped ferrofluids were subsequently prepared using sodium oleate and PEG (4000) as dispersants. Analyses using X-ray photoelectron spectroscopy, X-ray diffraction, and Fourier-transform infrared spectroscopy indicate that the Fe3O4 nanoparticles with a bilayer surfactant coating retain the inverse spinel-type structure and are successfully coated with sodium oleate and PEG (4000). Transmission electron microscopy, vibrating sample magnetometry, and particle-size analysis results indicate that the coated Fe3O4 nanoparticles also retain the good saturation magnetization of Fe3O4 (79.6 emu·g-1) and that the particle size of the bilayer-surfactant-enveloped Fe3O4 nanoparticles is 42.97 nm, which is substantially smaller than that of the unmodified Fe3O4 nanoparticles (486.2 nm). UV–vis and zeta-potential analyses reveal that the ferrofluids does not agglomerate for 120 h at a concentration of 4 g·L-1, which indicates that the ferrofluids are highly stable.

Keywords

magnetic fluids / iron oxides / nanoparticles / bilayers / sodium oleate / polyethylene glycol

Cite this article

Download citation ▾
Bai-yi Chen, Jian-hui Qiu, Hui-xia Feng. Synthesis and application of bilayer-surfactant-enveloped Fe3O4 nanoparticles: water-based bilayer-surfactant-enveloped ferrofluids. International Journal of Minerals, Metallurgy, and Materials, 2016, 23(2): 234-240 DOI:10.1007/s12613-016-1231-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yang H.H., Zhang S.Q., Chen X.L., Zhang Z.X., Xu J.G., Wang X.R. Magnetite-containing spherical silica nanoparticles for biocatalysis and bioseparations. Anal. Chem., 2004, 76(5): 1316.

[2]

Woo K., Hong J., Choi S., Lee H.W., Ahn J.P., Kim C.S., Lee S.W. Easy synthesis and magnetic properties of iron oxide nanoparticles. Chem. Mater., 2004, 16(14): 2814.

[3]

Nedkov I., Merodiiska T., Slavov L., Vandenberghe R.E., Kusano Y., Takada J. Surface oxidation, size and shape of nano-sized magnetite obtained by co-precipitation. J. Magn. Magn. Mater., 2006, 300(2): 358.

[4]

Hong R.Y., Pan T.T., Li H.Z. Microwave synthesis of magnetic Fe3O4 nanoparticles used as a precursor of nanocomposites and ferrofluids. J. Magn. Magn. Mater., 2006, 303(1): 60.

[5]

Yu L.Q., Zheng L.J., Yang J.X. Study of preparation and properties on magnetization and stability for ferromagnetic fluids. Mater. Chem. Phys., 2000, 66(1): 6.

[6]

Gun’ko Y.K., Cristmann U., Kessler V.G. Synthesis and structure of the first FeII heterometallic alkoxide [(THF)NaFe(OtBu)3]2: a possible precursor for new materials. Eur. J. Inorg. Chem., 2002, 5(5): 1029.

[7]

Shchukin D.G., Radtchenko I.L., Sukhorukov G.B. Micron- scale hollow polyelectrolyte capsules with nanosized magnetic Fe3O4 inside. Mater. Lett., 2003, 57(11): 1743.

[8]

Butter K., Philipse A.P., Vroege G.J. Synthesis and properties of iron ferrofluids. J. Magn. Magn. Mater., 2002, 252, 1.

[9]

Shen L.F., Laibinis P.E., Hatton T.A. Bilayer surfactant stabilized magnetic fluids: synthesis and interactions at interfaces. Langmuir, 1999, 15(2): 447.

[10]

Itoh H., Sugimoto T. Systematic control of size, shape, structure, and magnetic properties of uniform magnetite and maghemite particles. J. Colloid Interface Sci., 2003, 265(2): 283.

[11]

Singh A.P., Mishra M., Chandra A., Dhawan S.K. Graphene oxide/ferrofluid/cement composites for electromagnetic interference shielding application. Nanotechnology, 2011, 22(46): 465701.

[12]

Giri J., Pradhan P., Somani V., Chelawat H., Chhatre S., Banerjee R., Bahadur D. Synthesis and characterizations of water-based ferrofluids of substituted ferrites [Fe1-xBxFe2O4, B = Mn, Co (x = 0–1)] for biomedical applications. J. Magn. Magn. Mater., 2008, 320(5): 724.

[13]

Masalatsu H., Syusaburo H. Magnetic Iron Oxide–Dextran Complex and Process for its Production, 1978

[14]

Hong R.Y., Li J.H., Li H.Z., Ding J., Zheng Y., Wei D.G. Synthesis of Fe3O4 nanoparticles without inert gas protection used as precursors of magnetic fluids. J. Magn. Magn. Mater., 2008, 320(9): 1605.

[15]

Gao Y., Huang J.P., Liu Y.M., Gao L., Yu K.W., Zhang X. Optical negative refraction in ferrofluids with magnetocontrollability. Phys. Rev. Lett., 2010, 104(3): 338.

[16]

Bhatt H., Patel R., Mehta R.V. Magnetically induced Mie resonance in a magnetic sphere suspended in a ferrofluid. J. Opt. Soc. Am. A, 2010, 27(4): 873.

[17]

Shi D., Sun L.L., Mi G.J., Sheikh L., Bhattacharya S., Nayar S., Webster T.J. Controlling ferrofluid permeability across the blood-brain barrier model. Nanotechnology, 2014, 25(7): 075101.

[18]

Arizaga A., Millán A., Schubert U., Palacio F. Synthesis of silica-coated aqueous ferrofluids through ligand exchange with a new organosilica precursor. J. Mater. Sci., 2013, 48(6): 2550.

[19]

Cheng M.J., Ju G.N., Jiang C., Zhang Y.J., Shi F. Magnetically directed clean-up of underwater oil spills through a functionally integrated device. J. Mater. Chem. A, 2013, 1(43): 13411.

[20]

Ribeiro V.G.P., Barreto A.C.H., Denardin J.C., Mele G., Carbone L., Mazzetto S.E., Sousa E.M.B., Fechine P.B.A. Magnetic nanoparticles coated with anacardic acid derived from cashew nut shell liquid. J. Mater. Sci., 2013, 48(22): 7875.

[21]

Wu K.T., Kuo P.C., Yao Y.D., Tsai E.H. Magnetic and optical properties of Fe3O4 nanoparticle ferrofluids prepared by co-precipitation technique. IEEE. Trans. Magn., 2001, 37(4): 2651.

[22]

Wang Y.M., Cao X., Liu G.H., Hong R.Y., Chen Y.M., Chen X.F., Li H.Z., Xu B., Wei D.G. Synthesis of Fe3O4 magnetic fluid used for magnetic resonance imaging and hyperthermia. J. Magn. Magn. Mater., 2011, 323(23): 2953.

[23]

Ontiveros-Ortega A., Vidal F., Gimenez E., Ibáñez J.M. Effect of heavy metals on the surface free energy and zeta potential of volcanic glass: implications on the adhesion and growth of microorganisms. J. Mater. Sci., 2014, 49(9): 3550.

[24]

Torres-Díaz I., Rinaldi C. Recent progress in ferrofluids research: novel applications of magnetically controllable and tunable fluids. Soft Matter, 2014, 10(43): 8584.

[25]

Mishra M., Singh A.P., Singh B.P., Singh V.N., Dhawan S.K. Conducting ferrofluid: a high-performance microwave shielding material. J. Mater. Chem. A, 2014, 2(32): 13159.

[26]

Liu J., Mao Y., Ge J.P. The magnetic assembly of polymer colloids in a ferrofluid and its display applications. Nanoscale, 2012, 4(5): 1598.

[27]

Gleich B., Weizenecker J. Tomographic imaging using the nonlinear response of magnetic particles. Nature, 2005, 435, 1214.

[28]

Kim D.K., Dobson J. Nanomedicine for targeted drug delivery. J. Mater. Chem., 2009, 19(35): 6294.

[29]

Dobson J. Cancer therapy: Death by magnetism. Nat. Mater., 2012, 11(12): 1006.

AI Summary AI Mindmap
PDF

109

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/