Chemical, mechanical, and thermal expansion properties of a carbon nanotube-reinforced aluminum nanocomposite

Manjula Sharma , Vimal Sharma

International Journal of Minerals, Metallurgy, and Materials ›› 2016, Vol. 23 ›› Issue (2) : 222 -233.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2016, Vol. 23 ›› Issue (2) : 222 -233. DOI: 10.1007/s12613-016-1230-3
Article

Chemical, mechanical, and thermal expansion properties of a carbon nanotube-reinforced aluminum nanocomposite

Author information +
History +
PDF

Abstract

In the present study, the chemical and mechanical properties and the thermal expansion of a carbon nanotube (CNT)-based crystalline nano-aluminum (nano Al) composite were reported. The properties of nanocomposites were tailored by incorporating CNTs into the nano Al matrix using a physical mixing method. The elastic moduli and the coefficient of thermal expansion (CTE) of the nanocomposites were also estimated to understand the effects of CNT reinforcement in the Al matrix. Microstructural characterization of the nanocomposite reveals that the CNTs are dispersed and embedded in the Al matrix. The experimental results indicate that the incorporation of CNTs into the nano Al matrix results in the increase in hardness and elastic modulus along with a concomitant decrease in the coefficient of thermal expansion. The hardness and elastic modulus of the nanocomposite increase by 21% and 20%, respectively, upon CNT addition. The CTE of CNT/Al nanocomposite decreases to 70% compared with that of nano Al.

Keywords

metal matrix composites / carbon nanotubes / nanocomposites / chemical properties / thermal expansion / mechanical properties

Cite this article

Download citation ▾
Manjula Sharma, Vimal Sharma. Chemical, mechanical, and thermal expansion properties of a carbon nanotube-reinforced aluminum nanocomposite. International Journal of Minerals, Metallurgy, and Materials, 2016, 23(2): 222-233 DOI:10.1007/s12613-016-1230-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Miracle D.B. Metal matrix composites: from science to technological significance. Compos. Sci. Technol., 2005, 65(15-16): 2526.

[2]

Altenpohl D.G. Aluminum: Technology, Applications and Environment: a Profile of a Modern Metal Aluminum from Within, 1998

[3]

Surappa M.K. Aluminium matrix composites: challenges and opportunities. Sadhana, 2003, 28(1): 319.

[4]

Rohatgi P. Cast aluminum–matrix composites for automotive applications. JOM, 1991, 43(4): 10.

[5]

Terrones M. Science and technology of the twenty-first century: Synthesis, properties and applications of carbon nanotubes. Annu. Rev. Mater. Res., 2003, 33, 419.

[6]

Ruoff R.S., Qian D., Liu W.K. Mechanical properties of carbon nanotubes: theoretical predictions and experimental measurements. C. R. Phys., 2003, 4(9): 993.

[7]

Li C.Y., Chou T.W. Elastic moduli of multi-walled carbon nanotubes and the effect of van der Waals forces. Compos. Sci. Technol., 2003, 63(11): 1517.

[8]

Bakshi S.R., Lahiri D., Agarwal A. Carbon nanotubes reinforced metal matrix composites: a review. Int. Mater. Rev., 2010, 55(1): 41.

[9]

Bakshi S.R., Singh V., Balani K., McCartney D.G., Seal S., Agarwal A. Carbon nanotube reinforced aluminum composite coating via cold spraying. Surf. Coat. Technol., 2008, 202(21): 5162.

[10]

Esawi A.M.K., Morsi K., Sayed A., Abdel Gawad A., Borah P. Fabrication and properties of dispersed carbon nanotube–aluminum composites. Mater. Sci. Eng. A, 2009, 508(1-2): 167.

[11]

Laha T., Chen Y., Lahiri D., Agarwal A. Tensile properties of carbon nanotube reinforced aluminum nanocomposite fabricated by plasma spray forming. Compos. Part A, 2009, 40(5): 589.

[12]

Kwon H., Estili M., Takagi K., Miyazaki T., Kawasaki A. Combination of hot extrusion and spark plasma sintering for producing carbon nanotube reinforced aluminum matrix composites. Carbon, 2009, 47(3): 570.

[13]

Liao J.Z., Pang J.J., Tan M.J. Nanoindentation of multi-wall CNT reinforced Al composites. Key Eng. Mater., 2010, 447-448, 549.

[14]

Esawi A.M.K., Morsi K., Sayed A., Taher M., Lanka S. The influence of carbon nanotube (CNT) morphology and diameter on the processing and properties of CNT-reinforced aluminium composites. Compos. Part A, 2011, 42(3): 234.

[15]

Bradbury C.R., Gomon J.K., Kollo L., Kwon H., Leparoux M. Hardness of multi wall carbon nanotubes reinforced aluminium matrix composites. J. Alloys Compd., 2014, 585, 362.

[16]

Cullity B.D., Stock S.R. Elements of X-ray diffraction, 2001 170.

[17]

Zhou T., Wang X., Liu X.H., Lai J.Z. Effect of silane treatment of carboxylic-functionalized multi-walled carbon nanotubes on the thermal properties of epoxy nanocomposites. Express Polym. Lett., 2010, 4(4): 217.

[18]

Le V.T., Ngo C.L., Le Q.T., Ngo T.T., Nguyen D.N., Vu M.T. Surface modification and functionalization of carbon nanotube with some organic compounds. Adv. Nat. Sci., 2013, 4(3): 035017.

[19]

Delhaes P., Couzi M., Trinquecoste M., Dentzer J., Hamidou H., Vix-Guterl C. A comparison between Raman spectroscopy and surface characterizations of multiwall carbon nanotubes. Carbon, 2006, 44(16): 3005.

[20]

Casiraghi C., Ferrari A.C., Robertson J. Raman spectroscopy of hydrogenated amorphous carbon. Phy. Rev. B, 2005, 72, 085401.

[21]

Liao J.Z., Tan M.J. Mixing of carbon nanotubes (CNTs) and aluminum powder for powder metallurgy use. Powder Technol., 2011, 208(1): 42.

[22]

Oliver W.C., Pharr G.M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res., 1992, 7(6): 1564.

[23]

Li X.D., Bhushan B. A review of nanoindentation continuous stiffness measurement technique and its applications. Mater. Charact., 2002, 48(1): 11.

[24]

Nouri N., Ziaei-Rad S., Adibi S., Karimzadeh F. Fabrication and mechanical property prediction of carbon nanotube reinforced aluminum nanocomposites. Mater. Des., 2012, 34, 1.

[25]

Chou T.W. Cahn R.W., Haasen P., Kramer E.J. Structure and properties of composites. Materials Science and Technology: a Comprehensive Treatment, 2005

[26]

Williams D.F. Cahn R.W., Haasen P., Kramer E.J. Medical and dental materials. Materials Science and Technology: a Comprehensive Treatment, 2005

[27]

Lemieux S., Elomari S., Nemes J.A., Skibo M.D. Thermal expansion of isotropic Duralcan metal-matrix composites. J. Mater. Sci., 1998, 33(17): 4381.

[28]

Hatta H., Takei J., Taya M. Effect of dispersed microvoids on thermal expansion behavior of composite materials. Mater. Sci. Eng. A, 2000, 285(1-2): 99.

[29]

Tang Y.B., Cong H.T., Zhang R., Cheng H.M. Thermal expansion of a composite of single-walled carbon nanotubes and nanocrystalline aluminum. Carbon, 2004, 42(15): 3260.

[30]

Deng C.F., Ma Y.X., Zhang P., Zhang X.X., Wang D.Z. Thermal expansion behaviors of aluminum composite reinforced with carbon nanotubes. Mater. Lett., 2008, 62(15): 2301.

[31]

Liu Z.Y., Xiao B.L., Wang W.G., Ma Z.Y. Elevated temperature tensile properties and thermal expansion of CNT/2009Al composites. Compos. Sci. Technol., 2012, 72(15): 1826.

[32]

Sharma M., Pal H., Sharma V. Thermal expansion of multiwall carbon nanotube reinforced nanocrystalline silver matrix composite. AIP Conf. Proc., 2014, 1591(1): 374.

[33]

Pal H., Sharma V., Sharma M. Thermal expansion behavior of CNT/Ag nanocomposite. Int. J. Mater. Res., 2014, 105(6): 566.

AI Summary AI Mindmap
PDF

148

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/