Burn-resistant behavior and mechanism of Ti14 alloy

Yong-nan Chen , Ya-zhou Huo , Xu-ding Song , Zhao-zhao Bi , Yang Gao , Yong-qing Zhao

International Journal of Minerals, Metallurgy, and Materials ›› 2016, Vol. 23 ›› Issue (2) : 215 -221.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2016, Vol. 23 ›› Issue (2) : 215 -221. DOI: 10.1007/s12613-016-1229-9
Article

Burn-resistant behavior and mechanism of Ti14 alloy

Author information +
History +
PDF

Abstract

The direct-current simulation burning method was used to investigate the burn-resistant behavior of Ti14 titanium alloy. The results show that Ti14 alloy exhibits a better burn resistance than TC4 alloy (Ti–6Al–4V). Cu is observed to preferentially migrate to the surface of Ti14 alloy during the burning reaction, and the burned product contains Cu, Cu2O, and TiO2. An oxide layer mainly comprising loose TiO2 is observed beneath the burned product. Meanwhile, Ti2Cu precipitates at grain boundaries near the interface of the oxide layer, preventing the contact between O2 and Ti and forming a rapid diffusion layer near the matrix interface. Consequently, a multiple-layer structure with a Cu-enriched layer (burned product)/Cu-lean layer (oxide layer)/Cu-enriched layer (rapid diffusion layer) configuration is formed in the burn heat-affected zone of Ti14 alloy; this multiple-layer structure is beneficial for preventing O2 diffusion. Furthermore, although Al can migrate to form Al2O3 on the surface of TC4 alloy, the burn-resistant ability of TC4 is unimproved because the Al2O3 is discontinuous and not present in sufficient quantity.

Keywords

titanium alloys / interface / morphology / burn resistance

Cite this article

Download citation ▾
Yong-nan Chen, Ya-zhou Huo, Xu-ding Song, Zhao-zhao Bi, Yang Gao, Yong-qing Zhao. Burn-resistant behavior and mechanism of Ti14 alloy. International Journal of Minerals, Metallurgy, and Materials, 2016, 23(2): 215-221 DOI:10.1007/s12613-016-1229-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lutjering G., Williams J.C. Titanium, 2003 178.

[2]

Luo Q.S., Li S.F., Pei H.P. Progress in titanium fire resistant technology for aero-engine. J. Aerosp. Power, 2012, 27(12): 2763.

[3]

Zhang X.Y., Zhao Y.Q., Bai C.G. Titanium Alloy and Application, 2005 161.

[4]

Zhang P.Z., Xu Z., Zhang G.H., He Z.Y. Surface plasma chromized burn-resistant titanium alloy. Surf. Coat. Technol., 2007, 201(9): 4884.

[5]

Wang M.M., Zhao Y.Q., Zhou L., Zhang D. Study on creep behavior of Ti–V–Cr burn resistant alloys. Mater. Lett., 2004, 58(26): 3248.

[6]

Zhao Y.Q., Zhu K.Y., Li Y. A Low Cost Burn Resistant Ti Alloy, 2002

[7]

Zhao Y.Q., Zhu K.Y., Li Y. A Low Cost near β–Ti Alloy, 2002

[8]

Zhao Y.Q., Zhou L., Deng J. Effects of the alloying element Cr on the burning behavior of titanium alloys. J. Alloys Compd., 1999, 284(1-2): 190.

[9]

Zhao Y.Q., Zhu K.Y., Qu H.L., Wu H., Zhou L., Zhou Y.G. Microstructures of a burn resistant highly stabilized β-titanium alloy. Mater. Sci. Eng. A, 2000, 282(1): 153.

[10]

Zhu K.Y., Zhao Y.Q. Burning interfaces analysis of burn-resistant titanium alloys Ti40 and alloy C. Rare. Met. Mater. Eng., 2002, 31(192): 17.

[11]

Zhao Y.Q., Zhou L., Deng J., Zhu K.Y., Wang X. Burning behavior of titanium alloys in mixture of Ar and O2. Rare. Met. Mater. Eng., 2000, 29(5): 344.

[12]

Zhao Y.Q., Zhao X.M., Zhu K.Y. Burn resistant characteristics and microstructure of Ti–Cu–Al alloys. Rare. Met. Mater. Eng., 1998, 27(6): 360.

[13]

Zhao Y.Q., Liu J.L., Zhou L. Analysis on the segregation of typical β alloying elements of Cu, Fe and Cr in Ti alloys. Rare. Met. Mater. Eng., 2005, 34(4): 531.

[14]

Chen Y.N., Wang J., Wei J.F., Zhao Y.Q. The compressive deformation behavior and deformation mechanism of Ti14 alloy in semi-solid state. J. Wuhan Univ. Technol. Mater. Sci. Ed., 2014, 29(1): 143.

[15]

Chen Y.N., Luo C., Wei J.F., Zhao Y.Q., Xu Y.K. Liquid segregation phenomenological behaviors of Ti14 alloy during semisolid deformation. Adv. Mech. Eng., 2014, 6, 1.

[16]

Wang F.D. Direct laser fabrication of Ti–25V–15Cr–2Al–0.2C burn-resistant titanium alloy. Metall. Mater. Trans. A., 2012, 43(2): 677.

AI Summary AI Mindmap
PDF

216

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/