A novel process for comprehensive utilization of vanadium slag

Li-ying Liu , Tao Du , Wen-jun Tan , Xin-pu Zhang , Fan Yang

International Journal of Minerals, Metallurgy, and Materials ›› 2016, Vol. 23 ›› Issue (2) : 156 -160.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2016, Vol. 23 ›› Issue (2) : 156 -160. DOI: 10.1007/s12613-016-1222-3
Article

A novel process for comprehensive utilization of vanadium slag

Author information +
History +
PDF

Abstract

Traditional processes for treating vanadium slag generate a huge volume of solid residue and a large amount of harmful gas, which cause serious environmental problems. In this study, a new process for the comprehensive utilization of vanadium slag was proposed, wherein zeolite A and a V2O5/TiO2 system were synthesized. The structural properties of the as-synthesized zeolite A and the V2O5/TiO2 system were characterized using various experimental techniques, including X-ray diffraction, X-ray fluorescence, scanning electron microscopy, and infrared spectroscopy. The results reveal that zeolite A and the V2O5/TiO2 system are successfully obtained with high purity. The results of gas adsorption measurements indicate that the prepared zeolite A exhibits high selectivity for CO2 over N2 and is a candidate material for CO2 capture from flue-gas streams.

Keywords

vanadium slag / zeolite / waste utilization / structural properties

Cite this article

Download citation ▾
Li-ying Liu, Tao Du, Wen-jun Tan, Xin-pu Zhang, Fan Yang. A novel process for comprehensive utilization of vanadium slag. International Journal of Minerals, Metallurgy, and Materials, 2016, 23(2): 156-160 DOI:10.1007/s12613-016-1222-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aarabi-Karasgani M., Rashchi F., Mostoufi N., Vahidi E. Leaching of vanadium from LD converter slag using sulfuric acid. Hydrometallurgy, 2010, 102(1-4): 14.

[2]

Okudan M.D., Akcil A., Tuncuk A., Deveci H. Effect of parameters on vanadium recovery from by-products of the Bayer process. Hydrometallurgy, 2015, 152, 76.

[3]

Zhang J.H., Zhang W., Zhang L., Gu S.Q. Mechanism of vanadium slag roasting with calcium oxide. Int. J. Miner. Process., 2015, 138, 20.

[4]

Waligora J., Bulteel D., Degrugilliers P., Damidot D., Potdevin J.L., Measson M. Chemical and mineralogical characterization of LD converter steel slags: a multi-analytical techniques approach. Mater. Charact., 2010, 61(1): 39.

[5]

Li X.S., Xie B., Wang G.E., Li X.J. Oxidation process of low-grade vanadium slag in presence of Na2CO3. Trans. Nonferrous Met. Soc. China., 2011, 21, 1860.

[6]

Moskalyk R.R., Alfantazi A.M. Processing of vanadium: a review. Miner. Eng., 2003, 16(9): 793.

[7]

Burkardt A., Weisweiler W., van der Tillaart J.A.A., Schafer Sindlinger A., Lox E.S. Influence of the V2O5 loading on the structure and activity of V2O5/TiO2 SCR catalysts for vehicle application. Top. Catal., 2001, 16(1): 369.

[8]

Carotta M.C., Ferroni M., Gherardi S., Guidi V., Malagù C., Martinelli G., Sacerdoti M., Di Vona M.L., Licoccia S., Traversa E. Thick-film gas sensors based on vanadium–titanium oxide powders prepared by sol–gel synthesis. J. Eur. Ceram. Soc., 2004, 24(6): 1409.

[9]

Rodella C.B., Mastelaro V.R. Structural characterization of the V2O5/TiO2 system obtained by the sol–gel method. J. Phys. Chem. Solids, 2003, 64(5): 833.

[10]

Zegaoui O., Hoang-Van C., Karroua M. Selective catalytic reduction of nitric oxide by propane over vanadia–titania aerogels. Appl. Catal. B, 1996, 9(1-4): 211.

[11]

Reiche M.A., Ortelli E., Baiker A. Vanadia grafted on TiO2–SiO2, TiO2 and SiO2 aerogels: structural properties and catalytic behaviour in selective reduction of NO by NH3. Appl. Catal. B, 1999, 23(2-3): 187.

[12]

Diao J., Xie B., Ji C.Q., Guo X., Wang Y.H., Li X.J. Growth of spinel crystals in vanadium slag and their characterization. Cryst. Res. Technol., 2009, 44(7): 707.

[13]

Prokof’ev V.Yu., Gordina N.E., Efremov A.M. Synthesis of type A zeolite from mechanoactivated metakaolin mixtures. J. Mater. Sci., 2013, 48(18): 6276.

[14]

Rodella C.B., Franco R.W.A., Magon C.J., Donoso J.P., Nunes L.A.O., Saeki M.J., Aegerter M.A., Florentino A.O. V2O5/TiO2 catalyst xerogels: method of preparation and characterization. J. Sol Gel Sci. Technol., 2002, 25(1): 75.

[15]

Du T., Liu L.Y., Xiao P., Che S., Wang H.M. Preparation of zeolite NaA for CO2 capture from nickel laterite residue. Int. J. Miner. Metall. Mater., 2014, 21(8): 820.

[16]

Sakthivel T., Reid D.L., Goldstein I., Hench L., Seal S. Hydrophobic high surface area zeolites derived from fly ash for oil spill remediation. Environ. Sci. Technol., 2013, 47(11): 5843.

[17]

Rayalu S.S., Udhoji J.S., Meshram S.U., Naidu R.R., Devotta S. Estimation of crystallinity in flyash-based zeolite-A using XRD and IR spectroscopy. Curr. Sci., 2005, 89(12): 2147.

[18]

Zhou C.Y., Alshameri A., Yan C.J., Qiu X.M., Wang H.Q., Ma Y.N. Characteristics and evaluation of synthetic 13X zeolite from Yunnan’s natural halloysite. J. Porous Mater., 2013, 20(4): 587.

[19]

Lu W.G., Verdegaal W.M., Yu J.M., Balbuena P.B., Jeong H., Zhou H.C. Building multiple adsorption sites in porous polymer networks for carbon capture applications. Energy Environ. Sci., 2013, 6, 3559.

AI Summary AI Mindmap
PDF

112

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/