Electrochemical and spectroscopic study of interfacial interactions between chalcopyrite and typical flotation process reagents

Gustavo Urbano , Isabel Lázaro , Israel Rodríguez , Juan Luis Reyes , Roxana Larios , Roel Cruz

International Journal of Minerals, Metallurgy, and Materials ›› 2016, Vol. 23 ›› Issue (2) : 127 -136.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2016, Vol. 23 ›› Issue (2) : 127 -136. DOI: 10.1007/s12613-016-1219-y
Article

Electrochemical and spectroscopic study of interfacial interactions between chalcopyrite and typical flotation process reagents

Author information +
History +
PDF

Abstract

Comparative voltammetry and differential double-layer capacitance studies were performed to evaluate interfacial interactions between chalcopyrite (CuFeS2) and n-isopropyl xanthate (X) in the presence of ammonium bisulfite/39wt% SO2 and caustic starch at different pH values. Raman spectroscopy, Fourier transform infrared (FTIR) spectroscopy, contact angle measurements, and microflotation tests were used to establish the type and extent of xanthate adsorption as well as the species involved under different mineral surface conditions in this study. The results demonstrate that the species that favor a greater hydrophobicity of chalcopyrite are primarily CuX and S0, whereas oxides and hydroxides of Cu and Fe as well as an excess of starch decrease the hydrophobicity. A conditioning of the mineral surface with ammonium bisulfite/39wt% SO2 at pH 6 promotes the activation of surface and enhances the xanthate adsorption. However, this effect is diminished at pH ≥ 8, when an excess of starch is added during the preconditioning step.

Keywords

sulfide minerals / chalcopyrite / xanthates / flotation / interfacial reactions / electrochemistry / spectroscopy

Cite this article

Download citation ▾
Gustavo Urbano, Isabel Lázaro, Israel Rodríguez, Juan Luis Reyes, Roxana Larios, Roel Cruz. Electrochemical and spectroscopic study of interfacial interactions between chalcopyrite and typical flotation process reagents. International Journal of Minerals, Metallurgy, and Materials, 2016, 23(2): 127-136 DOI:10.1007/s12613-016-1219-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Fuerstenau D.W. Advances in Flotation Technology, Society for Mining Metallurgy & Exploration, 1999 3.

[2]

Tolley W., Kotlyar D., Wagoner R.V. Fundamental electrochemical studies of sulfide mineral flotation. Miner. Eng., 1996, 9(6): 603.

[3]

Gupta V.K., Jain R., Radhapyari K., Jadon N., Agarwal S. Voltammetric techniques for the assay of pharmaceuticals: a review. Anal. Biochem., 2011, 408(2): 179.

[4]

Chernyshova I.V. Anodic processes on a galena (PbS) electrode in the presence of n-butyl xanthate studied FTIR-spectroelectrochemically. J. Phys. Chem. B, 2001, 105(34): 8185.

[5]

Buckley A.N., Hope G.A., Woods R. Metals from sulfide minerals: the role of adsorption of organic reagents in processing technologies. Top. Appl. Phys., 2003, 85, 61.

[6]

Hu Y.H., Sun W., Wang D.Z. Electrochemistry of Flotation of Sulphide Minerals, 2009 68.

[7]

Roos J.R., Celis J.P., Sundarsono A.S. Electrochemical control of metallic and chalcopyrite-xanthate flotation. Int. J. Miner. Process., 1990, 28(3-4): 231.

[8]

Garner J.R., Woods R. An electrochemical investigation of the natural floatability of chalcopyrite. Int. J. Miner. Process., 1979, 6(1): 1.

[9]

Vaughan D.J., Becker U., Wright K. Sulphide mineral surfaces: theory and experiment. Int. J. Miner. Process., 1997, 51(1-4): 1.

[10]

Yin Q., Vaughan D.J., England K.E., Kelsall G.H., Brandon N.P. Surface oxidation of chalcopyrite (CuFeS2) in alkaline solutions. J. Electrochem. Soc., 2000, 147(8): 2945.

[11]

Leppinen J.O. FTIR and flotation investigation of the adsorption of ethyl on activated and non-activated sulfide minerals. Int. J. Miner. Process., 1990, 30(3): 245.

[12]

Moreno-Medrano E.D., Casillas N., Cruz R., Lara-Castro R.H. Impedance study during anodic oxidation of native galena in highly concentrated xanthate solution. Int. J. Electrochem. Sci., 2011, 6(12): 6319.

[13]

Zhang Y.H., Cao Z., Cao Y.D., Sun C.Y. FTIR studies of xanthate adsorption on chalcopyrite, pentlandite and pyrite surfaces. J. Mol. Struct., 2013, 1048, 434.

[14]

Damaskin B.B., Petrii O.A., Batrakov V.V. Adsorption of Organic Compounds on Electrodes, 1971

[15]

Moreno-Medrano E.D., Casillas N., Cruz R., Lara-Castro R.H. Study of adsorption of sodium isopropyl xanthate on galena. ECS Trans., 2011, 36(1): 463.

[16]

Cao M., Liu Q. Reexamining the functions of zinc sulfate as a selective depressant in differential sulfide flotation: the role of coagulation. J. Colloid Interface Sci., 2006, 301(2): 532.

[17]

Warren G.W., Wadsworth M.E., El-Raghy S.M. Passive and transpassive anodic behaviour of chalcopyrite in acid solutions. Metall. Trans. B, 1982, 13(4): 571.

[18]

Cisneros-González I., Oropeza-Guzmán M.T., González I. An electrochemical study of galena concentrate in perchlorate medium at pH 2.0: the influence of chlorideions. Electrochim. Acta, 2000, 45(17): 2729.

[19]

Urbano G., Reyes V.E., Veloz M.A., González I., Cruz J. Pyrite-arsenopyrite galvanic interaction and electrochemical reactivity. J. Phys. Chem. C, 2008, 112(28): 10453.

[20]

Cruz R., Luna-Sánchez R.M., Lapidus G.T., González I., Monroy M. An experimental strategy to determine galvanic interactions affected the reactivity of sulfide mineral concentrates. Hydrometallurgy, 2005, 78(3-4): 198.

[21]

Cisneros-González I., Oropeza-Guzmán M.T., González I. Cyclic voltammetry applied to the characterisation of galena. Hydrometallurgy, 1999, 53(2): 133.

[22]

Gou H. Electrochemistry and Flotation of the Enargite and Chalcopyrite [Dissertation], 2003 147.

[23]

Kelsall G.H. Vaughan D.J., Pattrick R.A.D. Electrochemistry and surface chemistry of sulfide minerals. Mineral Surfaces, 1995 219.

[24]

Dutra A.J.B., Espínola A., Sampaio J.A. Electrochemical depression of galena aiming at selective sulfide flotation. J. Brazil. Chem. Soc., 1997, 8(2): 193.

[25]

Mendiratta N.K. Kinetic Studies of Sulfide Mineral Oxidation and Xanthate Adsorption [Dissertation], 2000 157.

[26]

Bockris J.O.M., Reddy A.K., Gamboa A.M. Modern Electrochemistry 2A, 2002 871.

[27]

Smith G.D., Clark R.J. The role of H2S in pigment blackening. J. Cult. Herit., 2002, 3(2): 101.

[28]

Branch M.S., Berndt P.R., Botha J.R. Structure and morphology of CuGaS2 thin films. Thin Solid Films, 2003, 431-432, 431.

[29]

White S.N. Laser Raman spectroscopy as a technique for identification of seafloor hydrothermal and cold seep minerals. Chem. Geol., 2009, 259(3-4): 240.

[30]

Parker G.K., Woods R., Hope G.A. Raman investigation of chalcopyrite oxidation. Colloids Surf. A, 2008, 318(1-3): 160.

[31]

Andreev G.N., Barzev A. Raman spectroscopic study of some chalcopyrite–xanthate flotation products. J. Mol. Struct., 2003, 661-662, 325.

[32]

Hamilton J.C., Farmer J.C., Anderson R.J. In situ Raman spectroscopy of anodic films formed on copper and silver in sodium hydroxide solution. J. Electrochem. Soc., 1986, 133(4): 739.

[33]

Faria D.L., Venaüncio S.S., Oliveira M.T. Raman microspectroscopy of some iron oxides and oxyhydroxides. J. Raman Spectrosc., 1997, 28(11): 873.

[34]

Bellot-Gurlet L., Neff D., Réguer S., Monnier J., Saheb M., Dillmann P. Raman studies of corrosion layers formed on archaeological irons in various media. J. Nano Res., 2009, 8, 147.

[35]

Minceva-Sukarova B., Najdoski M., Grozdanov I., Chunnilall C.J. Raman spectra of thin solid films of some metal sulfides. J. Mol. Struct., 1997, 410-411, 267.

AI Summary AI Mindmap
PDF

125

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/