Synthesis of crystalline perovskite-structured SrTiO3 nanoparticles using an alkali hydrothermal process

U. K. N. Din , T. H. T. Aziz , M. M. Salleh , A. A. Umar

International Journal of Minerals, Metallurgy, and Materials ›› 2016, Vol. 23 ›› Issue (1) : 109 -115.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2016, Vol. 23 ›› Issue (1) : 109 -115. DOI: 10.1007/s12613-016-1217-0
Article

Synthesis of crystalline perovskite-structured SrTiO3 nanoparticles using an alkali hydrothermal process

Author information +
History +
PDF

Abstract

We report an experimental route for synthesizing perovskite-structured strontium titanate (SrTiO3) nanocubes using an alkali hydrothermal process at low temperatures without further heating. Furthermore, we studied the influence of heating time (at 180°C) on the crystallinity, morphology, and perovskite phase formation of SrTiO3. The SrTiO3 powder, which is formed via nanocube agglomeration, transforms into cubic particles with a particle size of 120–150 nm after 6 h of hydrothermal sintering. The crystallinity and percentage of the perovskite phase in the product increased with heating time. The cubic particles contained 31.24at% anatase TiO2 that originated from the precursor. By varying the weight ratio of anatase TiO2 used to react with the strontium salt precursor, we reduced the anatase-TiO2 content to 18.8at%. However, the average particle size increased when the anatase-TiO2 content decreased.

Keywords

strontium titanate / nanoparticles / anatase / hydrothermal synthesis

Cite this article

Download citation ▾
U. K. N. Din, T. H. T. Aziz, M. M. Salleh, A. A. Umar. Synthesis of crystalline perovskite-structured SrTiO3 nanoparticles using an alkali hydrothermal process. International Journal of Minerals, Metallurgy, and Materials, 2016, 23(1): 109-115 DOI:10.1007/s12613-016-1217-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kojima A., Teshima K., Shirai Y., Miyasaka T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc., 2009, 131(17): 6050.

[2]

Yamada K., Nakada K., Takeuchi Y., Nawa K., Yamane Y. Tunable perovskite semiconductor CH3NH3SnX3 (X: Cl, tBr, or I) characterized by X-ray and DTA. {iBull. Chem. Soc. Jpn.}, 2011, 84(9): 926.

[3]

Saad M.M. Strontium titanate perovskite SrTiO3 as a promising ideal material for MEMS applications: first-principles FP-LMTO + LSDA Study. J. Nat. Sci. Math., 2014, 7(1): 1.

[4]

Zhang S.C., Liu J.X., Han Y.X., Chen B.C., Li X.G. Formation mechanisms of SrTiO3 nanoparticles under hydrothermal conditions. Mater. Sci. Eng. B, 2004, 110(1): 11.

[5]

da Silva L.F., Avansi W., Moreira M.L., Mesquita A., Maia L.J.Q., Andrés J., Longo E., Mastelaro V.R. Relationship between crystal shape, photoluminescence, and local structure in SrTiO3 synthesized by microwave-assisted hydrothermal method. J. Nanomater., 2012, 2012, 1.

[6]

Park J.K., Ryu H., Park H.D., Choi S.Y. Synthesis of SrTiO3:Al,Pr phosphors from a complex precursor polymer and their luminescent properties. J. Eur. Ceram. Soc., 2001, 21(4): 535.

[7]

Klaytae T., Panthong P., Thountom S. Preparation of nanocrystalline strontium titanate (SrTiO3) powder by sol–gel combustion method. Ceram. Int., 2013, 39(S1): S405.

[8]

Liu X.H., Bai H.X. Liquid–solid reaction synthesis of SrTiO3 submicron-sized particles. Mater. Chem. Phys., 2011, 127(1-2): 21.

[9]

Nakashima K., Kera M., Fujii I., Wada S. A new approach for the preparation of SrTiO3 nanocubes. Ceram. Int., 2013, 39(3): 3231.

[10]

Fuentes S., Zarate R.A., Chavez E., Muñoz P., Díaz- Droguett D., Leyton P. Preparation of SrTiO3 nanomaterial by a sol–gel-hydrothermal method. J. Mater. Sci., 2010, 45(6): 1448.

[11]

Alvarado S.F., La Mattina F., Bednorz J.G. Electroluminescence in SrTiO3:Cr single-crystal nonvolatile memory cells. Appl. Phys. A, 2007, 89(1): 85.

[12]

Dong W.J., Li X.Y., Yu J., Guo W.C., Li B.J., Tan L., Li C.R., Shi J.J., Wang G. Porous SrTiO3 spheres with enhanced photocatalytic performance. Mater. Lett., 2012, 67(1): 131.

[13]

Srdić V.V., Djenadić R., Milanović M., Pavlović N., Stijepović I., Nikolić L.M., Moshopoulous E., Giannakopoulos K., Dusza J., Maca K. Direct synthesis of nanocrystalline oxide powders by wet-chemical techniques. Process. Appl. Ceram., 2010, 4(3): 127.

[14]

Rangel-Hernandez Y.M., Rendón-Angeles J.C., Matamoros- Veloza Z., Pech-Canul M.I., Diaz-de la Torre S., Yanagisawa K. One-step synthesis of fine SrTiO3 particles using SrSO4 ore under alkaline hydrothermal conditions. Chem. Eng. J., 2009, 155(1-2): 483.

[15]

Zheng Z.K., Huang B.B., Qin X.Y., Zhang X.Y., Dai Y. Facile synthesis of SrTiO3 hollow microspheres built as assembly of nanocubes and their associated photocatalytic activity. J. Colloid Interface Sci., 2011, 358(1): 68.

[16]

Gersten B.L. Growth of multicomponent perovskite oxide crystals: synthesis conditions for the hyrothermal growth of ferroelectric powders. [in] K. Byrappa and T. Ohachi, Crystal Growth Technology, 2003 299.

[17]

Wongmaneerung R., Yimnirun R., Ananta S. Effect of vibro-milling time on phase formation and particle size of lead titanate nanopowders. Mater. Lett., 2006, 60(12): 1447.

[18]

Jing L.Q., Qu Y.C., Wang B.Q., Li S.D., Jiang B.J., Yang L.B., Fu W., Fu H.G., Sun J.Z. Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity. Sol. Energy Mater. Sol. Cells, 2006, 90(12): 1773.

[19]

Behnajady M.A., Alamdari M.E., Modirshahla N. Investigation of the effect of heat treatment process on characteristics and photocatalytic activity of TiO2-UV100 nanoparticles. Environ. Prot. Eng., 2013, 39(1): 33.

[20]

da Silva L.F., Maia L.J.Q., Bernardi M.I.B., Andrés J.A., Mastelaro V.R. An improved method for preparation of SrTiO3 nanoparticles. Mater. Chem. Phys., 2011, 125(1-2): 168.

[21]

Pontes F.M., Leite E.R., Lee E.J.H., Longo E., Varela J.A. Preparation, microstructural and electrical characterization of SrTiO3 thin films prepared by chemical route. J. Eur. Ceram. Soc., 2001, 21(3): 419.

[22]

Liu S.W., Xiu Z.L., Liu J.A., Xu F.X., Yu W.N., Yu J.X., Feng G.J. Combustion synthesis and characterization of perovskite SrTiO3 nanopowders. J. Alloys Compd., 2008, 457(1-2): L12.

[23]

Zheng Y.T., Zhang Z.L., Mao Y.L. Photovoltaic response enhancement of SrTiO3/TiO2 composite. J. Alloys Compd., 2013, 554, 204.

[24]

Demirörs A.F., Imhof A. BaTiO3, SrTiO3, CaTiO3, and BaxSr1-xTiO3 particles: a general approach for monodisperse colloidal perovskites. Chem. Mater., 2009, 21(13): 3002.

AI Summary AI Mindmap
PDF

131

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/