Microstructure, thermal properties, and corrosion behaviors of FeSiBAlNi alloy fabricated by mechanical alloying and spark plasma sintering

Hong-lei Wang , Tai-xiu Gao , Jia-zheng Niu , Pei-jian Shi , Jing Xu , Yan Wang

International Journal of Minerals, Metallurgy, and Materials ›› 2016, Vol. 23 ›› Issue (1) : 77 -82.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2016, Vol. 23 ›› Issue (1) : 77 -82. DOI: 10.1007/s12613-016-1213-4
Article

Microstructure, thermal properties, and corrosion behaviors of FeSiBAlNi alloy fabricated by mechanical alloying and spark plasma sintering

Author information +
History +
PDF

Abstract

An equiatomic FeSiBAlNi amorphous high-entropy alloy (HEA) was fabricated by mechanical alloying (MA). A fully amorphous phase was obtained in the FeSiBAlNi HEA after 240 h of MA. The bulk FeSiBAlNi samples were sintered by spark plasma sintering (SPS) at 520 and 1080°C under a pressure of 80 MPa. The sample sintered at 520°C exhibited an amorphous composite structure comprising solid-solution phases (body-centered cubic (bcc) and face-centered cubic (fcc) phases). When the as-milled amorphous HEA was consolidated at 1080°C, another fcc phase appeared and the amorphous phase disappeared. The sample sintered by SPS at 1080°C exhibited a slightly higher melting temperature compared with those of the as-milled alloy and the bulk sample sintered at 520°C. The corrosion behaviors of the as-sintered samples were investigated by potentiodynamic polarization measurements and immersion tests in seawater solution. The results showed that the HEA obtained by SPS at 1080°C exhibited better corrosion resistance than that obtained by SPS at 520°C.

Keywords

high entropy alloys / spark plasma sintering / mechanical alloying / microstructure / corrosion resistance

Cite this article

Download citation ▾
Hong-lei Wang, Tai-xiu Gao, Jia-zheng Niu, Pei-jian Shi, Jing Xu, Yan Wang. Microstructure, thermal properties, and corrosion behaviors of FeSiBAlNi alloy fabricated by mechanical alloying and spark plasma sintering. International Journal of Minerals, Metallurgy, and Materials, 2016, 23(1): 77-82 DOI:10.1007/s12613-016-1213-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhang Y., Zhou Y.J., Lin J.P., Chen G.L., Liaw P.K. Solid solution phase formation rules for multi-component alloys. Adv. Eng. Mater., 2008, 10(6): 534.

[2]

Guo S., Liu C.T. Phase stability in high entropy alloys: formation of solid-solution phase or amorphous phase. Prog. Nat. Sci. Mater. Int., 2011, 21(6): 433.

[3]

Yeh J.W. Recent progress in high-entropy alloys. Ann. Chim., 2006, 31, 633.

[4]

Lin C.M., Tsai H.L. Evolution of microstructure. hardness, and corrosion properties of high-entropy Al0.5CoCrFeNi alloy, Intermetallics, 2011, 19(3): 288.

[5]

Singh S., Wanderka N., Murty B.S., Glatzel U., Banhart J. Decomposition in multi-component AlCoCrCuFeNi high-entropy alloy. Acta Mater., 2011, 59(1): 182.

[6]

Zhang Y., Zuo T.T., Cheng Y.Q., Liaw P.K. High-entropy alloys with high saturation magnetization. electrical resistivity, and malleability, Sci. Rep., 2013, 3, 1.

[7]

Wen L.H., Kou H.C., Li J.S., Chang H., Xue X.Y., Zhou L. Effect of aging temperature on microstructure and properties of AlCoCrCuFeNi high-entropy alloy. Intermetallics, 2009, 17(4): 266.

[8]

Yeh J.W., Chen S.K., Lin S.J., Gan J.Y., Chin T.S., Shun T.T., Tsau C.H., Chang S.Y. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv. Eng. Mater., 2004, 6(5): 299.

[9]

Wang C., Ji W., Fu Z.Y. Mechanical alloying and spark plasma sintering of CoCrFeNiMnAl high-entropy alloy. Adv. Powder Technol., 2014, 25(4): 1334.

[10]

Zhang K.B., Fu Z.Y., Zhang J.Y., Shi J., Wang W.M., Wang H., Wang Y.C., Zhang Q.J. Nanocrystalline CoCrFeNiCuAl high-entropy solid solution synthesized by mechanical alloying. J. Alloys Compd., 2009, 485(1-2): L31.

[11]

Chen W.P., Fu Z.Q., Fang S.C., Xiao H.Q., Zhu D.Z. Alloying behavior, microstructure and mechanical properties in a FeNiCrCo0.3Al0.7 high entropy alloy. Mater. Des., 2013, 51, 854.

[12]

Ji W., Wang W.M., Wang H., Zhang J.Y., Wang Y.C., Zhang F., Fu Z.Y. Alloying behavior and novel properties of CoCrFeNiMn high-entropy alloy fabricated by mechanical alloying and spark plasma sintering. Intermetallics, 2015, 56, 24.

[13]

Abdellahi M., Heidari J., Sabouhi R. Influence of B source materials on the synthesis of TiB2 -Al2 O3 nanocomposite powders by mechanical alloying. Int. J. Miner. Mettall. Mater., 2013, 20(12): 1214.

[14]

Ji W., Fu Z.Y., Wang W.M., Wang H., Zhang J.Y., Wang Y.C., Zhang F. Mechanical alloying synthesis and spark plasma sintering consolidation of CoCrFeNiAl high-entropy alloy. J. Alloys Compd., 2014, 589, 61.

[15]

Fu Z.Q., Chen W.P., Fang S.C., Zhang D.Y., Xiao H.Q., Zhu D.Z. Alloying behavior and deformation twinning in a CoNiFeCrAl0.6Ti0.4 high entropy alloy processed by spark plasma sintering. J. Alloys Compd., 2013, 553, 316.

[16]

Fu Z.Q., Chen W.P., Xiao H.Q., Zhou L.W., Zhu D.Z., Yang S.F. Fabrication and properties of nanocrystalline Co0.5FeNiCrTi0.5 high entropy alloy by MA-SPS technique. Mater. Des., 2013, 44, 535.

[17]

Fang S.C., Chen W.P., Fu Z.Q. Microstructure and mechanical properties of twinned Al0.5CrFeNiCo0.3C0.2 high entropy alloy processed by mechanical alloying and spark plasma sintering. Mater. Des., 2014, 54, 973.

[18]

Fu Z.Q., Chen W.P., Chen Z., Wen H.M., Lavernia E.J. Influence of Ti addition and sintering method on microstructure and mechanical behavior of a medium-entropy Al0.6CoNiFe alloy. Mater. Sci. Eng. A, 2014, 619, 137.

[19]

Sriharith R., Murty B.S., Kottada R.S. Alloying, thermal stability and strengthening in spark plasma sintered Alx- CoCrCuFeNi high entropy alloys. J. Alloys Compd., 2014, 583, 419.

[20]

Wang J., Zheng Z., Xu J., Wang Y. Microstructure and magnetic properties of mechanically alloyed FeSiBAlNi (Nb) high entropy alloys. J. Magn. Magn. Mater., 2014, 355, 58.

[21]

Fang S.S., Xiao X.S., Xia L., Li W.H., Dong Y.D. Relationship between the widths of supercooled liquid regions and bond parameters of Mg-based bulk metallic glasses. J. Non Cryst. Solids, 2003, 321(1-2): 120.

[22]

Kittel C. Introduction to Solid State Physics. 6th Ed.. John Wiley & Songs, Inc., New York, 1980 26.

[23]

Takeuchi A., Inoue A. Calculations of mixing enthalpy and mismatch entropy for ternary amorphous alloys. Mater. Trans. JIM, 2000, 41(11): 1372.

[24]

Guo S., Hu Q., Ng C., Liu C.T. More than entropy in high-entropy alloys: Forming solid solutions or amorphous phase. Intermetallics, 2013, 41, 96.

AI Summary AI Mindmap
PDF

122

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/