Morphology of α-Si3N4 in Fe–Si3N4 prepared via flash combustion

Bin Li , Jun-hong Chen , Jin-dong Su , Ming-wei Yan , Jia-lin Sun , Yong Li

International Journal of Minerals, Metallurgy, and Materials ›› 2015, Vol. 22 ›› Issue (12) : 1322 -1327.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2015, Vol. 22 ›› Issue (12) : 1322 -1327. DOI: 10.1007/s12613-015-1200-1
Article

Morphology of α-Si3N4 in Fe–Si3N4 prepared via flash combustion

Author information +
History +
PDF

Abstract

The state and formation mechanism of α-Si3N4 in Fe–Si3N4 prepared by flash combustion were investigated by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The results indicate that α-Si3N4 crystals exist only in the Fe–Si3N4 dense areas. When FeSi75 particles react with N2, which generates substantial heat, a large number of Si solid particles evaporate. The product between Si gas and N2 is a mixture of α-Si3N4 and β-Si3N4. At the later stage of the flash combustion process, α-Si3N4 crystals dissolve and reprecipitate as β-Si3N4 and the β-Si3N4 crystals grow outward from the dense areas in the product pool. As the temperature decreases, the α-Si3N4 crystals cool before transforming into β-Si3N4 crystals in the dense areas of Fe–Si3N4. The phase composition of flash-combustion-synthesized Fe–Si3N4 is controllable through manipulation of the gas-phase reaction in the early stage and the α→β transformation in the later stage.

Keywords

silicon nitride / combustion synthesis / morphology / crystal growth

Cite this article

Download citation ▾
Bin Li, Jun-hong Chen, Jin-dong Su, Ming-wei Yan, Jia-lin Sun, Yong Li. Morphology of α-Si3N4 in Fe–Si3N4 prepared via flash combustion. International Journal of Minerals, Metallurgy, and Materials, 2015, 22(12): 1322-1327 DOI:10.1007/s12613-015-1200-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chen J.H., Wang X.D., Sun J.L., Zhan H.S., Song W. Research on the Fe-silicon nitride material self-producing N2 at high temperature. J. Univ. Sci. Technol. Beijing, 2006, 13(1): 78.

[2]

Kometani K., Iizuka K., Kaga T. Behavior of ferro-Si3N4 in taphole mud of blast furnace. Taikabutsu, 1998, 50(6): 326.

[3]

Hirata T., Akiyama K., Morimoto T. Synthesis of ß-Si3N4 particles from a-Si3N4 particles. J. Eur. Ceram. Soc., 2000, 20(8): 1191.

[4]

Lee D.D., Kang S.J.L., Petzow G., Yoon D.N. Effect of a to ß (ß') phase transition on the sintering of silicon nitride ceramics. J. Am. Ceram. Soc., 1990, 73(3): 767.

[5]

Xu X., Huang L.P., Liu X.J., Fu X.R. Effects of a/ß ratio in starting powder on microstructure and mechanical properties of silicon nitride ceramics. Ceram. Int., 2002, 28(3): 279.

[6]

Chen I.W., Rosenflanz A. A tough SiAlON ceramic based on a-Si3N4 with a whisker-like microstructure. Nature, 1997, 389(6652): 701.

[7]

Chu A.M., Qin M.L., Jia B.R., Lu H.F., Qu X.H. Carbothermal synthesis of Si3N4 powders using a combustion synthesis precursor. Int. J. Miner. Metall. Mater., 2013, 20(1): 76.

[8]

Yin S.W., Wang L., Tong L.G., Yang F.M., Li Y.H. Kinetic study on the direct nitridation of silicon powders diluted with alpha-Si3N4 at normal pressure. Int. J. Miner. Metall. Mater., 2013, 20(5): 493.

[9]

Yang Y., Chen Y.X., Lin Z.M., Li J.T. Synthesis of a-Si3N4 using low-a-phase Si3N4 diluent by the seeding technique. Scripta Mater., 2007, 56(5): 401.

[10]

Cano I.G., Borovinskaya I.P., Rodriguez M.A., Grachev V.V. Effect of dilution and porosity on self-propagating high-temperature synthesis of silicon nitride. J. Am. Ceram. Soc., 2002, 85(9): 2209.

[11]

Jin H.B., Yang Y., Chen Y.X., Lin Z.M., Li J.T. Mechanochemical-activation-assisted combustion synthesis of a-Si3N4. J.^Am. Ceram. Soc., 2006, 89(3): 1099.

[12]

Huang Q.W., Wang P.L., Cheng Y.B., Yan D.S. Preparation of a-Sialon seed particles with different morphology. J. Mater. Sci. Lett., 2002, 21(7): 589.

[13]

Hlrao K., Miyamoto Y., Koizumi M. Synthesis of silicon nitride by a combustion reaction under high nitrogen pressure. J. Am. Ceram. Soc., 1986, 69(4): c-60.

[14]

Lee W.C., Chung S.L. Combustion synthesis of Si3N4 powder. J. Mater. Res., 1997, 12(12): 805.

[15]

Wang H.B., Han J.C., Du S.Y. Effect of nitrogen pressure and oxygen-containing impurities on self-propagating high temperature synthesis of Si3N4. J. Eur. Ceram. Soc., 2001, 21(3): 297.

[16]

Li J.F., Li K., Li G.B., Yan D.M. Preparation of Si3N4 powder by combustion synthesis. J. Ceram. Process. Res., 2009, 10(3): 296.

[17]

Yang J.H., Chen Y.X., Liu G.H., Lin Z.M., Li J.T. Effects of diazenedicarboxamide additive on the content of a-Si3N4 synthesized by combustion method. Ceram. Int., 2012, 38(2): 961.

[18]

Hubbard C.R., Snyder R.L. RIR-measurement and use in quantitative XRD. Powder Diffr., 1988, 3(2): 74.

[19]

Chen J.H. The Composition and Structure of Fe-Si3N4 and its Effect on High Temperature Performance of Al2O3-SiC-C Composite Refractories, 2006 14.

[20]

Gnilitsya I.D. Sintering densification and microstructure formation kinetics in silicon nitride ceramics. Powder Metall. Met. Ceram., 2002, 41(7-8): 360.

[21]

Chen J.H., Song W., Liu X.G., Sun J.L. Formation mechanism of FexSi particles in ferro-silicon nitride prepared via flashing combustion. J. Univ. Sci. Technol. Beijing, 2009, 31(5): 598.

[22]

Ziegler G., Heinrich J., Wötting G. Relationships between processing, microstructure and properties of dense and reaction-bonded silicon nitride. J. Mater. Sci., 1987, 22(9): 3041.

[23]

Barin I. Thermochemical Data of Pure Substances, 2003

[24]

Barin I. Thermochemical Data of Pure Substances, 2003 1480.

[25]

Chen Z.Y. Chemical Thermodynamics of Refractories, 1991 571.

[26]

Jennings H.M. On reactions between silicon and nitrogen. J.^Mater. Sci., 1983, 18, 951.

AI Summary AI Mindmap
PDF

117

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/