Morphology characterization of periclase–hercynite refractories by reaction sintering

Peng Jiang , Jun-hong Chen , Ming-wei Yan , Bin Li , Jin-dong Su , Xin-mei Hou

International Journal of Minerals, Metallurgy, and Materials ›› 2015, Vol. 22 ›› Issue (11) : 1219 -1224.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2015, Vol. 22 ›› Issue (11) : 1219 -1224. DOI: 10.1007/s12613-015-1188-6
Article

Morphology characterization of periclase–hercynite refractories by reaction sintering

Author information +
History +
PDF

Abstract

A periclase-hercynite brick was prepared via reaction sintering at 1600°C for 6 h in air using magnesia and reaction-sintered hercynite as raw materials. The microstructure development of the periclase-hercynite brick during sintering was investigated using X-ray diffraction, X-ray photoelectron spectroscopy, and scanning electron microscopy in combination with energy-dispersive X-ray spectroscopy. The results show that during sintering, Fe2+, Fe3+ and Al3+ ions in hercynite crystals migrate and react with periclase to form (Mg1-xFe x)(Fe2-yAl y)O4 spinel with a high Fe/Al ratio. Meanwhile, Mg2+ in periclase crystals migrates into hercynite crystals and occupies the oxygen tetrahedron vacancies. This Mg2+ migration leads to the formation of (Mg1-uFe u)(Fe2-vAl v)O4 spinel with a lower Fe/Al ratio and results in Al3+ remaining in hercynite crystals. Cation diffusion between periclase and hercynite crystals promotes the sintering process and results in the formation of a microporous structure.

Keywords

refractories / periclase / hercynite / sintering / morphology / diffusion

Cite this article

Download citation ▾
Peng Jiang, Jun-hong Chen, Ming-wei Yan, Bin Li, Jin-dong Su, Xin-mei Hou. Morphology characterization of periclase–hercynite refractories by reaction sintering. International Journal of Minerals, Metallurgy, and Materials, 2015, 22(11): 1219-1224 DOI:10.1007/s12613-015-1188-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bray D.J. Toxicity of chromium compounds formed in refractories. Am. Ceram. Soc. Bull., 1985, 64(7): 1012.

[2]

Liu G.P., Li N., Yan W., Gao C.H., Zhou W., Li Y.Y. Composition and microstructure of a periclase-composite spinel brick used in the burning zone of a cement rotary kiln. Ceram. Int., 2014, 40(6): 8149.

[3]

Qiu G.B., Yue C.S., Li X., Guo M., Zhang M. Preparation and characterization of regenerated MgO-CaO refractory bricks sintered under different atmospheres. Int. J. Miner. Metall. Mater., 2014, 21(12): 1233.

[4]

Lee W.E., Moore R.E. Evolution of in-situ refractories in the 20th century. J. Am. Ceram. Soc., 1998, 81(6): 1385.

[5]

Goncalves G.E., Duarte A.K., Brant P.O.R.C. Magneisa-spinel brick for cement rotary kilns. Am. Ceram. Soc. Bull., 1993, 72(2): 49.

[6]

Rodríguez P.J.L., Rodríguez M.A., De Aza S., Pena P. Reaction sintering of zircon/dolomite mixtures. J. Eur. Ceram. Soc., 2001, 21(3): 343.

[7]

Chen M., Lu C.Y., Yu J.K. Improvement in performance of MgO–CaO refractories by addition of nano-sized ZrO2. J. Eur. Ceram. Soc., 2007, 27(16): 4633.

[8]

Serena S., Sainz M.A., Caballero A. The system Clinker–MgO–CaZrO3 and its application to the corrosion behavior of CaZrO3/MgO refractory matrix by clinker. J. Eur. Ceram. Soc., 2009, 29(11): 2199.

[9]

Guo Z.Q., Palco S., Rigaud M. Bonding of cement clinker onto doloma-based refractories. J. Am. Ceram. Soc., 2005, 88(6): 1481.

[10]

Rodríguez J.L., Rodríguez M.A., De Aza S., Pena P. Reaction sintering of zircon–dolomite mixtures. J. Eur. Ceram. Soc., 2001, 21(3): 343.

[11]

Rodríguez E.A., Alan Castillo G., Das T.K., Puente-Ornelas R., González Y., Arato A.M., Aguilar-Martínez J.A. MgAl2O4 spinel as an effective ceramic bonding in a MgO–CaZrO3 refractory. J. Eur. Ceram. Soc., 2013, 33(13–14): 2767.

[12]

Chen J.H., Yu L.Y., Sun J.L., Li Y., Xue W.D. Synthesis of hercynite by reaction sintering. J. Eur. Ceram. Soc., 2011, 31(3): 259.

[13]

Fukushima J., Hayashi Y., Takizawa H. Structure and magnetic properties of FeAl2O4 synthesized by microwave magnetic field irradiation. J. Asian Ceram. Soc., 2013, 1(1): 41.

[14]

Guo Z.Q., Nievoll J. Application of magnesia–hercynite refractories in cement rotary kilns. China Cem., 2007, 5, 63.

[15]

Liu G.P., Li N., Yan W., Tao G.H., Li Y.Y. Composition and structure of a composite spinel made from magnesia and hercynite. J. Ceram. Process. Res., 2012, 13(4): 480.

[16]

Yamashita T., Hayes P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. App. Surf. Sci., 2008, 254(8): 2441.

[17]

Lavina B., Princivalle F., Della Giusta A. Controlled time-temperature oxidation reaction in a synthetic Mg-hercynite. Phys. Chem. Miner., 2005, 32(2): 83.

[18]

Huang W.M., Hillert M., Wang X.Z. Thermodynamic assessment of the CaO-MgO-SiO2 system. Metall. Mater. Trans. A., 1995, 26(9): 2293.

[19]

Shankar A., Görnerup M., Lahiri A.K., Seetharaman S. Experimental Investigation of the Viscosities in CaO-SiO2-MgO-Al2O3 and CaO-SiO2-MgO-Al2O3-TiO2 Slags. Metall. Mater. Trans. B., 2007, 38(6): 911.

[20]

Osborn E.F., DeVries R.C., Gee K.H., Kraner H.M. Optimum composition of blast furnace slag as deduced from liquidus data for the quaternary system CaO-MgO-Al2O3-SiO2. Trans. AIME, 1954, 200(6): 33.

AI Summary AI Mindmap
PDF

126

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/