Spheroidization of molybdenum powder by radio frequency thermal plasma

Xiao-ping Liu , Kuai-she Wang , Ping Hu , Qiang Chen , Alex A. Volinsky

International Journal of Minerals, Metallurgy, and Materials ›› 2015, Vol. 22 ›› Issue (11) : 1212 -1218.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2015, Vol. 22 ›› Issue (11) : 1212 -1218. DOI: 10.1007/s12613-015-1187-7
Article

Spheroidization of molybdenum powder by radio frequency thermal plasma

Author information +
History +
PDF

Abstract

To control the morphology and particle size of dense spherical molybdenum powder prepared by radio frequency (RF) plasma from irregular molybdenum powder as a precursor, plasma process parameters were optimized in this paper. The effects of the carrier gas flow rate and molybdenum powder feeding rate on the shape and size of the final products were studied. The molybdenum powder morphology was examined using high-resolution scanning electron microscopy. The powder phases were analyzed by X-ray diffraction. The tap density and apparent density of the molybdenum powder were investigated using a Hall flow meter and a Scott volumeter. The optimal process parameters for the spherical molybdenum powder preparation are 50 g/min powder feeding rate and 0.6 m3/h carrier gas rate. In addition, pure spherical molybdenum powder can be obtained from irregular powder, and the tap density is enhanced after plasma processing. The average size is reduced from 72 to 62 µm, and the tap density is increased from 2.7 to 6.2 g/cm3. Therefore, RF plasma is a promising method for the preparation of high-density and high-purity spherical powders.

Keywords

powder materials / molybdenum / radio frequency plasma / spheroidization / processing parameters

Cite this article

Download citation ▾
Xiao-ping Liu, Kuai-she Wang, Ping Hu, Qiang Chen, Alex A. Volinsky. Spheroidization of molybdenum powder by radio frequency thermal plasma. International Journal of Minerals, Metallurgy, and Materials, 2015, 22(11): 1212-1218 DOI:10.1007/s12613-015-1187-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kolobov Y.R., Kieback B., Ivanov K.V., Weissgaerber T., Girsova N.V., Pochivalov Y.I., Grabovetskaya G.P., Ivanov M.B., Kazyhanov V.U., Alexandrov I.V. The structure and microhardness evolution in submicrocrystalline molybdenum processed by severe plastic deformation followed by annealing. Int. J. Refract. Met. Hard Mater., 2003, 21(1–2): 69.

[2]

Mrotzek T., Hoffmann A., Martin U. Hardening mechanisms and recrystallization behaviour of several molybdenum alloys. Int. J. Refract. Met. Hard Mater., 2006, 24(4): 298.

[3]

Sheng Y.W., Guo Z.M., Hao J.J., Shao H.P., Wang Y.M. Characterization of spherical molybdenum powders prepared by RF plasma processing. Powder Metall. Ind., 2011, 21(6): 6.

[4]

Saheb N. Spark plasma and microwave sintering of Al6061 and Al2124 alloys. Int. J. Miner. Metall. Mater., 2013, 20(2): 152.

[5]

Lu X., Sun B., Zhao T.F., Wang L.N., Liu C.C., Qu X.H. Microstructure and mechanical properties of spark plasma sintered Ti-Mo alloys for dental applications. Int. J. Miner. Metall. Mater., 2014, 21(5): 479.

[6]

Kersten H., Rohde D., Berndt J., Deutsch H., Hippler R. Investigations on the energy influx at plasma processes by means of a simple thermal probe. Thin Solid Films, 2000, 377–378, 585.

[7]

Belmonte M., Osendi M.I., Miranzo P. Modeling the effect of pulsing on the spark plasma sintering of silicon nitride materials. Scripta Mater., 2011, 65(3): 273.

[8]

Chang Y.H., Huang D., Jia C.C., Cui Z.W., Wang C.C., Liang D. Influence of plasma on the densification mechanism of SPS under multi-field effect. Int. J. Miner. Metall. Mater., 2014, 21(9): 906.

[9]

Zhou H.P., Xu S., Zhao Z., Xiang Y. Inductively coupled hydrogen plasma processing of AZO thin films for heterojunction solar cell applications. J. Alloys Compd., 2014, 610, 107.

[10]

Liu B.H., Gu H.C., Chen Q.L. Preparation of nanosized Mo powder by microwave plasma chemical vapor deposition method. Mater. Chem. Phys., 1999, 59(3): 204.

[11]

Wang Y.M., Hao J.J., Sheng Y.W. Spheroidization of Nd-Fe-B Powders by RF Induction Plasma Processing. Rare. Met. Mater. Eng., 2013, 42(9): 1810.

[12]

Ryu T., Sohn H.Y., Kim Y.U., Olivas-Martinez M. Plasma synthesis of nanosized W-Co composite powder followed by carburization with a methane-hydrogen mixture. J. Nanopart. Res., 2010, 12(8): 2851.

[13]

Chau J.L.H. Synthesis of Ni and bimetallic FeNi nanopowders by microwave plasma method. Mater. Lett., 2007, 61, 2753.

[14]

Fukumasa O. Synthesis of new ceramics from powder mixtures using thermal plasma processing. Thin Solid Films, 2001, 390(1–2): 37.

[15]

Sheng Y.W., Guo Z.M., Hao J.J., Shao H.P., Wang S.C. Preparation of micro-spherical titanium powder by RF plasma. Rare. Met. Mater. Eng., 2013, 42(6): 1291.

[16]

Zhang H.B., Bai L.Y., Hu P., Yuan F.L., Li J.L. Single-step pathway for the synthesis of tungsten nanosized powders by RF induction thermal plasma. Int. J. Refract. Met. Hard. Mater., 2012, 31, 33.

[17]

Bai L.Y., Fan J.M., Hu P., Yuan F.L., Li J.L., Tang Q. RF plasma synthesis of nickel nanopowders via hydrogen reduction of nickel hydroxide/carbonate. J. Alloys Compd., 2009, 481(1–2): 563.

[18]

Hu P., Yan S.K., Yuan F.L., Bai L.Y., Li J.L., Chen Y.F. Effect of plasma spheroidization process on the microstructure and crystallographic phases of silica, alumina and nickel particles. Plasma Sci. Technol., 2007, 9(5): 611.

[19]

Ryu T., Sohn H.Y., Hwang K.S., Fang Z.Z. Chemical vapor synthesis (CVS) of tungsten nanopowder in a thermal plasma reactor. Int. J. Refract. Met. Hard. Mater., 2009, 27(1): 149.

[20]

Boulos M. Plasma power can make better powders. Met. Powder Rep., 2004, 59(5): 16.

[21]

Ko T.S., Yang S., Hsu H.C., Chu C.P., Lin H.F., Liao S.C., Lu T.C., Kuo H.C., Hsieh W.F., Wang S.C. ZnO nanopowders fabricated by dc thermal plasma synthesis. Mater. Sci. Eng. B, 2006, 134(1): 54.

[22]

Kumar S., Selvarajan V., Padmanabhan P.V.A., Sreekumar K.P. Spheroidization of metal and ceramic powders in thermal plasma jet: comparison between experimental results and theoretical estimation. J. Mater. Process. Technol., 2006, 176(1–3): 87.

[23]

Jiang X.L., Boulos M. Induction plasma spheroidization of tungsten and molybdenum powders. Trans. Nonferrous Met. Soc. China, 2006, 16(1): 13.

AI Summary AI Mindmap
PDF

157

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/