Electrochemical corrosion failure mechanism of M152 steel under a salt-spray environment

Pan Yi , Kui Xiao , Kang-kang Ding , Xu Wang , Li-dan Yan , Cheng-liang Mao , Chao-fang Dong , Xiao-gang Li

International Journal of Minerals, Metallurgy, and Materials ›› 2015, Vol. 22 ›› Issue (11) : 1183 -1189.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2015, Vol. 22 ›› Issue (11) : 1183 -1189. DOI: 10.1007/s12613-015-1183-y
Article

Electrochemical corrosion failure mechanism of M152 steel under a salt-spray environment

Author information +
History +
PDF

Abstract

The corrosion failure mechanism of M152 was studied using the neutral salt-spray test to better understand the corrosion behavior of 1Cr12Ni3Mo2VN (M152), provide a basis for the optimization of material selection, and prevent the occurrence of failure. Moreover, the mechanism was investigated using the mass loss method, polarization curves, electrochemical impedance spectroscopy (EIS), stereology microscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy (EDS). The results show that M152 steel suffers severe corrosion, especially pitting corrosion, in a high-salt-spray environment. In the early stage of the experiment, the color of the corrosion products was mainly orange. The products then gradually evolved into a dense, brown substance, which coincided with a decrease of corrosion rate. Correspondingly, the EIS spectrum of M152 in the late test also exhibited three time constants and presented Warburg impedance at low frequencies.

Keywords

heat-resistant steel / electrochemical corrosion / failure mechanism / salt spray test

Cite this article

Download citation ▾
Pan Yi, Kui Xiao, Kang-kang Ding, Xu Wang, Li-dan Yan, Cheng-liang Mao, Chao-fang Dong, Xiao-gang Li. Electrochemical corrosion failure mechanism of M152 steel under a salt-spray environment. International Journal of Minerals, Metallurgy, and Materials, 2015, 22(11): 1183-1189 DOI:10.1007/s12613-015-1183-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yang G., Wang C., Liu X.Q., Liu Z.D. Embrittlement Mechanism due to Slow Cooling During Quenching for M152 Martensitic Heat Resistant Steel. J. Iron Steel Res. Int., 2010, 17(6): 60.

[2]

Cui Z.Y., Li X.G., Xiao K., Dong C.F. Atmospheric corrosion of field-exposed AZ31 magnesium in a tropical marine environment. Corros. Sci., 2013, 76, 243.

[3]

Huang X.B., Luo T.W., He X.H. Development of exhaust stage blade steel 1Cr12Ni3Mo2VN for steam turbine. Spec. Steel Technol., 2005, 3, 51.

[4]

Kamimura T., Hara S., Miyuki H., Yamashita M., Uchida H. Composition and protective ability of rust layer formed on weathering steel exposed to various environments. Corros. Sci., 2006, 48(9): 2799.

[5]

Dobrzanski L.A., Brytan Z., Actis Grande M., Rosso M. Corrosion resistance of sintered duplex stainless steels in the salt fog spray test. J. Mater. Process. Technol., 2007, 192–193, 443.

[6]

Yamashita M., Miyuki H., Matsuda Y., Nagano H., Misawa T. The long term growth of the protective rust layer formed on weathering steel by atmospheric corrosion during a quarter of a century. Corros. Sci., 1994, 36(2): 283.

[7]

Choi Y.S., Shim J.J., Kim J.G. Effect of Cr, Cu, Ni and Ca on the corrosion behavior of low carbon steel in synthetic tap water. J. Alloys Compd., 2005, 391(1–2): 162.

[8]

Liu J.H., Shang H.B., Tao B.W., Li S.M. Corrosion behavior of high strength steels 0Cr18Ni5 and AF1410. J. Mater. Eng., 2004, 8, 29.

[9]

Hao X.L., Liu J.H., Li S.M., Yu M., Wang Z.W. Effect of neutral salt spray precorrosion on fatigue life of AF1410 steel. J. Aeronaut. Mater., 2010, 30(1): 67.

[10]

Pacheco A.M.G., Teixeira M.G.I.B., Ferreira M.G.S. Initial stages of chloride induced atmospheric corrosion of iron: an infrared spectroscopic study. Br. Corros. J., 1990, 25(1): 57.

[11]

Xu L.N., Zhu J.Y., Lu M.X., Zhang L., Chang W. Electrochemical impedance spectroscopy study on the corrosion of the weld zone of 3Cr steel welded joints in CO2 environments. Int. J. Miner. Metall. Mater., 2015, 22(5): 500.

[12]

Gao S.J., Dong C.F., Fu A.Q., Xiao K., Li X.G. Corrosion behavior of the expandable tubular in formation water. Int. J. Miner. Metall. Mater., 2015, 22(2): 149.

[13]

Sun M., Xiao K., Dong C.F., Li X.G., Zhong P. Electrochemical behaviors of ultra high strength steels with corrosion products. Acta Metall. Sin., 2011, 47(4): 442.

[14]

Flavio D., Stefano R. Premature corrosion failure of structural highway components made from weathering steel. Eng. Failure Anal., 2002, 9(5): 541.

[15]

Ishikawa T., Takeuchi K., Kandori K., Nakayama T. Transformation of γ-FeOOH to α-FeOOH in acidic solutions containing metal ions. Colloids Surf. A, 2005, 266(1–3): 155.

[16]

Guo Y.B., Li C., Liu Y.C., Yu L.M., Ma Z.Q., Liu C.X., Li H.J. Effect of microstructure variation on the corrosion behavior of high-strength low-alloy steel in 3.5wt% NaCl solution. Int. J. Miner. Metall. Mater., 2015, 22(6): 604.

[17]

Alcántara J., Chico B., Díaz I., Fuente D., Morcillo M. Airborne chloride deposit and its effect on marine atmospheric corrosion of mild steel. Corros. Sci., 2015, 97, 74.

[18]

Nomura K., Tasaka M., Ujihira Y. Conversion electron Mössbauer spectrometric study of corrosion products of iron immersed in sodium chloride solution. Corrosion, 1988, 44(3): 131.

[19]

Uruchurtu C.J. Electrochemical investigations of the activation mechanism of aluminum. Corrosion, 1991, 47(6): 472.

[20]

Cheng Y.L., Zhang Z., Cao F.H., Li J.F., Zhang J.Q., Wang J.M., Cao C.N. A study of the corrosion of aluminum alloy 2024-T3 under thin electrolyte layers. Corros. Sci., 2004, 46(7): 1649.

[21]

Zhang Q.C., Wang J.J., Wu J.S., Zheng W.L., Chen J.G., Li A.B. Effect of ion selective property on protective ability of rust layer formed on weathering steel exposed in the marine atmosphere. Acta Metall. Sin., 2001, 37(2): 193.

[22]

Kamimura T., Stratmann M. The influence of chromium on the atmospheric corrosion of steel. Corros. Sci., 2001, 43(3): 429.

[23]

Dillmann Ph., Mazaudier F., Hoerlé S. Advances in understanding atmospheric corrosion of iron. I. Rust characterisation of ancient ferrous artefacts exposed to indoor atmospheric corrosion. Corros. Sci., 2004, 46(6): 1401.

AI Summary AI Mindmap
PDF

113

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/