Determination of the liquidus and solidus temperatures of FeCrAl stainless steel

Zhi-biao Han , Jian-hua Liu , Yang He , Kang-wei Li , Yi-long Ji , Jian Liu

International Journal of Minerals, Metallurgy, and Materials ›› 2015, Vol. 22 ›› Issue (11) : 1141 -1148.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2015, Vol. 22 ›› Issue (11) : 1141 -1148. DOI: 10.1007/s12613-015-1178-8
Article

Determination of the liquidus and solidus temperatures of FeCrAl stainless steel

Author information +
History +
PDF

Abstract

The liquidus and solidus temperatures of FeCrAl stainless steel were determined by differential scanning calorimetry (DSC) at different heating rates. They were also calculated by Thermo-calc software and empirical formulae separately. The accuracy of calculation results was assessed by comparison with the corresponding DSC results. The liquidus temperatures calculated by empirical formulae, which exhibited a maximum deviation of 8.6°C, were more accurate than those calculated using Thermo-calc, which exhibited a maximum deviation of 12.11°C. On the basis of Thermo-calc calculations performed under the Scheil model, the solidus temperature could be well determined from solid fraction (f S) vs. temperature (t) curves at f S = 0.99. Furthermore, a theoretical analysis to determine the solidus temperature with this method was also provided.

Keywords

ferritic stainless steel / liquidus temperature / solidus temperature / differential scanning calorimetry

Cite this article

Download citation ▾
Zhi-biao Han, Jian-hua Liu, Yang He, Kang-wei Li, Yi-long Ji, Jian Liu. Determination of the liquidus and solidus temperatures of FeCrAl stainless steel. International Journal of Minerals, Metallurgy, and Materials, 2015, 22(11): 1141-1148 DOI:10.1007/s12613-015-1178-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Quadakkers W.J., Bennett M.J. Oxidation induced lifetime limits of thin walled, iron based, alumina forming, oxide dispersion strengthened alloy components. Mater. Sci. Technol., 1994, 10, 126.

[2]

Satyanarayana D.V., Pandey M.C. The role of active elements in Fe-Cr-Al alloys for heating applications. Bull. Mater. Sci., 1995, 18(3): 207.

[3]

Shen L.M., Lu J.S. Overview of researching of the carrier used for automobile gas purfier. Shanghai Iron Steel Res., 2004, 1, 35.

[4]

Matsumoto S. Recent advances in automobile exhaust catalyst. Catal. Surv. Jpn., 1997, 1, 111.

[5]

Miettinen J., Howe A.A. Estimation of liquidus temperatures for steels using thermodynamic approach. Ironmaking steelmaking, 2000, 27(3): 212.

[6]

Wu R.I., Perepezko J.H. Liquidus temperature determination in multicomponent alloys by thermal analysis. Metall. Mater. Trans. A, 2000, 31, 497.

[7]

V.G. Rivlin and G.V. Raynor, Critical evaluation of constitution of aluminum-chrominum-iron system, Int. Met. Rev., (1980), No. 4, p. 139.

[8]

Hu D.L., Zhang F. Ternary Alloy Phase Diagrams, 1995, Xi’an, Northwestern Polytechnical University Press, 117.

[9]

Howe A.A. Estimation of liquidus temperatures for steels. Ironmaking Steelmaking, 1998, 15(3): 134.

[10]

Gryc K., Smetana B., Zaludová M. Determination of the solidus and liquidus temperatures of the real-steel grades with dynamic thermal-analysis methods. Mater. Technol., 2013, 47(5): 569.

[11]

Cieslak M.J., Headley T.J., Knorovsky G.A., Romig A.D., Kollie T. A comparison of the solidification behavior of INCOLOY 909 and INCONEL 718. Metall. Trans. A, 1990, 21, 479.

[12]

Robino C.V., Michael J.R., Cieslak M.J. Solidification and welding metallurgy of Thermo-Span alloy. Sci. Technol. Weld. Joining, 1997, 2(5): 220.

[13]

Banda W., Georgalli G.A., Lang C., Eksteen J.J. Liquidus temperature determination of the Fe-Co-Cu system in the Fe-rich corner by thermal analysis. J. Alloys Compd., 2008, 461(1–2): 178.

[14]

Chen J.X. Frequently Used Data and Diagrams in Steel Making, 2010, Beijing, Metallurgical Industry Press, 511.

[15]

Presoly P., Piererr R., Bernhard C. Identification of defect prone peritectic steel grades by analyzing high temperature phase transformations. Metall. Mater. Trans. A, 2013, 44(12): 5337.

[16]

Kagawa A., Okamoto T. Influence of alloying elements on temperature and composition for peritectic reaction in plain carbon steels. Mater. Sci. Technol., 1986, 2, 997.

[17]

Presoly P., Xia G.M., Reisinger P., Bernhard C. Continuous casting of hypo-peritectic steels: mould thermal monitoring and DSC-analysis. Berg Hüttenmänn. Monatsh., 2014, 159(11): 430.

[18]

Schaffnit P., Stallybrass C., Konrad J., Stein F., Weinberg M. A Scheil-Gulliver model dedicated to the solidification of steel. Calphad, 2015, 45, 184.

[19]

Ohno M., Mirkovic D., Schmid-Fetzer R. Liquidus and solidus temperatures of Mg-rich Mg-Al-Mn-Zn alloys. Acta Mater., 2006, 54(15): 3883.

AI Summary AI Mindmap
PDF

221

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/