In situ (α-Al2O3+ZrB2)/Al composites with network distribution fabricated by reaction hot pressing

El Oualid Mokhnache , Gui-song Wang , Lin Geng , Kaveendran Balasubramaniam , Abdelkhalek Henniche , Noureddine Ramdani

International Journal of Minerals, Metallurgy, and Materials ›› 2015, Vol. 22 ›› Issue (10) : 1092 -1100.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2015, Vol. 22 ›› Issue (10) : 1092 -1100. DOI: 10.1007/s12613-015-1172-1
Article

In situ (α-Al2O3+ZrB2)/Al composites with network distribution fabricated by reaction hot pressing

Author information +
History +
PDF

Abstract

In situ (α-Al2O3+ZrB2)/Al composites with network distribution were fabricated using low-energy ball milling and reaction hot pressing. Differential thermal analysis (DTA) was used to study the reaction mechanisms in the Al–ZrO2–B system. X-ray diffraction (XRD) and scanning electron microscopy (SEM) in conjunction with energy-dispersive X-ray spectroscopy (EDX) were used to investigate the composite phases, morphology, and microstructure of the composites. The effect of matrix network size on the microstructure and mechanical properties was investigated. The results show that the optimum sintering parameters to complete reactions in the Al–ZrO2–B system are 850°C and 60 min. In situ-synthesized α-Al2O3 and ZrB2 particles are dispersed uniformly around Al particles, forming a network microstructure; the diameters of the α-Al2O3 and ZrB2 particles are approximately 1–3 μm. When the size of Al powder increases from 60–110 μm to 150–300 μm, the overall surface contact between Al powders and reactants decreases, thereby increasing the local volume fraction of reinforcements from 12% to 21%. This increase of the local volume leads to a significant increase in microhardness of the in situ (α-Al2O3–ZrB2)/Al composites from Hv 163 to Hv 251.

Keywords

metal matrix composites / network distribution / sintering / hot pressing / microhardness

Cite this article

Download citation ▾
El Oualid Mokhnache, Gui-song Wang, Lin Geng, Kaveendran Balasubramaniam, Abdelkhalek Henniche, Noureddine Ramdani. In situ (α-Al2O3+ZrB2)/Al composites with network distribution fabricated by reaction hot pressing. International Journal of Minerals, Metallurgy, and Materials, 2015, 22(10): 1092-1100 DOI:10.1007/s12613-015-1172-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Tjong S.C., Ma Z.Y. Microstructural and mechanical characteristics of in situ metal matrix composites. Mater. Sci. Eng. R, 2000, 29(3-4): 49.

[2]

Ma Z.Y., Tjong S.C. In situ ceramic particle-reinforced aluminum matrix composites fabricated by reaction pressing in the TiO2(Ti)–Al–B (B2O3) systems. Metall. Mater. Trans. A, 1997, 28(9): 1931.

[3]

Qu X.H., Zhang L., Wu M., Ren S.B. Review of metal matrix composites with high thermal conductivity for thermal management applications. Prog. Nat. Sci. Mater. Int., 2011, 21(3): 189.

[4]

Mokhnache E.O., Wang G.S., Geng L., Kaveendran B., Huang L.J. Synthesis and characterization of in situ (Al2O3–Si)/Al composites by reaction hot pressing. Acta Metall. Sin. Engl. Lett., 2014, 27(5): 930.

[5]

Zhu H.G., Min J., Li J.L., Ai Y.L., Ge L.Q., Wang H.Z. In situ fabrication of (a-Al2O3+Al3Zr)/Al composites in an Al–ZrO2 system. Compos. Sci. Technol., 2010, 70(15): 2183.

[6]

Zhu H.G., Min J., Li J.L., Chen J., Zhao J., Yao Y.Q. Influence of B/ZrO2 molar ratios on the ambient temperature wear properties of composites made by an Al–ZrO2–B system. Wear., 2011, 271(5-6): 635.

[7]

Huang L.J., Geng L., Li A.B., Yang F.Y., Peng H.X. In situ TiBw/Ti–6Al–4V composites with novel reinforcement architecture fabricated by reaction hot pressing. Scripta Mater., 2009, 60(11): 996.

[8]

Huang L.J., Geng L., Peng H.X. In situ (TiBw+TiCp)/Ti6Al4V composites with a network reinforcement distribution. Mater. Sci. Eng. A, 2010, 527(24-25): 6723.

[9]

Huang L.J., Geng L., Peng H.X. Microstructurally inhomogeneous composites: is a homogeneous reinforcement distribution optimal?. Prog. Mater. Sci., 2015, 71, 93.

[10]

Peng H.X., Fan Z., Evans J.R.G., Busfield J.J.C. Microstructure of ceramic foams. J. Eur. Ceram. Soc., 2000, 20(7): 807.

[11]

Peng H.X., Fan Z., Evans J.R.G. Bi-continuous metal matrix composites. Mater. Sci. Eng. A, 2001, 303(1-2): 37.

[12]

Peng H.X., Fan Z., Evans J.R.G. Novel MMC microstructures prepared by melt infiltration of reticulated ceramic preforms. Mater. Sci. Technol., 2000, 16(7-8): 903.

[13]

Hashin Z., Shtrikman S. A variational approach to the theory of the elastic behaviour of multiphase materials. J. Mech. Phys. Solids, 1963, 11(2): 127.

[14]

Mokhnache E.O., Wang G.S., Geng L., Huang L.J. Microstructures and mechanical properties of in situ Al2O3/Al–Si composites fabricated by reaction hot pressing. Metall. Mater. Trans. B, 2014, 45(6): 1965.

[15]

Zhu H.G., Jia C.C., Li J.L., Zhao J., Song J.Z., Yao Y.Q., Xie Z.H. Microstructure and high temperature wear of the aluminum matrix composites fabricated by reaction from Al–ZrO2–B elemental powders. Powder Technol., 2012, 217, 401.

[16]

Zhu H.G., Yao Y.Q., Li J.L., Chen S., Zhao J., Wang H.Z. Study on the reaction mechanism and mechanical properties of aluminum matrix composites fabricated in an Al–ZrO2–B system. Mater. Chem. Phys, 2011, 127(1-2): 179.

[17]

Dorofeeva O.V., Iorish V.S., Novikov V.P., Neumann D.B. NIST-JANAF thermochemical tables. II. Three molecules related to atmospheric chemistry: HNO3, H2SO4, and H2O2. J. Phys. Chem. Ref. Data, 2003, 32(2): 879.

[18]

Okamoto H. Al–Zr (aluminium–zirconium). J. Phase Equilib., 2002, 23(2-4): 455.

[19]

Kaveendran B., Wang G.S., Huang L.J., Geng L., Peng H.X. In situ (Al3Zr+Al2O3np)/2024Al metal matrix composite with novel reinforcement distributions fabricated by reaction hot pressing. J. Alloys Compd., 2013, 581, 16.

AI Summary AI Mindmap
PDF

108

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/