Effect of benzaldehyde on the electrodeposition and corrosion properties of Ni–W alloys

U. Pramod Kumar , C. Joseph Kennady

International Journal of Minerals, Metallurgy, and Materials ›› 2015, Vol. 22 ›› Issue (10) : 1060 -1066.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2015, Vol. 22 ›› Issue (10) : 1060 -1066. DOI: 10.1007/s12613-015-1168-x
Article

Effect of benzaldehyde on the electrodeposition and corrosion properties of Ni–W alloys

Author information +
History +
PDF

Abstract

The effect of different concentrations of benzaldehyde on the electrodeposition of Ni–W alloy coatings on a mild steel substrate from a citrate electrolyte was investigated in this study. The electrolytic alkaline bath (pH 8.0) contained stoichiometric amounts of nickel sulfate, sodium tungstate, and trisodium citrate as precursors. The corrosion resistance of the Ni–W-alloy-coated specimens in 0.2 mol/L H2SO4 was studied using various electrochemical techniques. Tafel polarization studies reveal that the alloy coatings obtained from the bath containing 50 ppm benzaldehyde exhibit a protection efficiency of 95.33%. The corrosion rate also decreases by 21.5 times compared with that of the blank. A higher charge-transfer resistance of 1159.40 Ω·cm2 and a lower double-layer capacitance of 29.4 μF·cm−2 further confirm the better corrosion resistance of the alloy coating. X-ray diffraction studies reveal that the deposits on the mild steel surface are consisted of nanocrystals. A lower surface roughness value (R max) of the deposits is confirmed by atomic force microscopy.

Keywords

nickel–tungsten alloys / benzaldehyde / electrodeposition / corrosion / mild steel / atomic force microscopy

Cite this article

Download citation ▾
U. Pramod Kumar, C. Joseph Kennady. Effect of benzaldehyde on the electrodeposition and corrosion properties of Ni–W alloys. International Journal of Minerals, Metallurgy, and Materials, 2015, 22(10): 1060-1066 DOI:10.1007/s12613-015-1168-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Sachin H.P., Achary G., Arthoba Naik Y., Venkatesha T.V. Polynitroaniline as brightener for zinc–nickel alloy plating from non-cyanide sulphate bath. Bull. Mater. Sci., 2007, 30(1): 57.

[2]

Mosavat S.H., Bahrololoom M.E., Shariat M.H. Electrodeposition of nanocrystalline Zn–Ni alloy from alkaline glycinate bath containing saccharin as additive. Appl. Surf. Sci., 2011, 257(20): 8311.

[3]

Basavanna S., Arthoba Naik Y. Electrochemical and reflectance studies of bright Zn–Co alloy coatings. Indian J. Chem. Technol., 2012, 19, 91.

[4]

Basavanna S., Arthoba Naik Y. Study of the effect of new brightener on Zn–Ni alloy electrodeposition from acid sulphate bath. J. Appl. Electrochem., 2011, 41(5): 535.

[5]

B. Joseph, S. John, A. Joseph, and B. Narayana, Imidazolidine-2-thione as corrosion inhibitor for mild steel in hydrochloric acid, Indian J. Chem. Technol., 17(2010), p. 366.

[6]

Eliaz N., Sridhar T.M., Gileadi E. Synthesis and characterization of nickel tungsten alloys by electrodeposition. Electrochim. Acta, 2005, 50(14): 2893.

[7]

Slavcheva E., Mokwa W., Schnakenberg U. Electrodeposition and properties of NiW films for MEMS application. Electrochim. Acta, 2005, 50(28): 5573.

[8]

Farzaneh M.A., Zamanzad-Ghavidel M.R., Raeissi K., Golozar M.A., Saatchi A., Kabi S. Effects of Co and W alloying elements on the electrodeposition aspects and properties of nanocrystalline Ni alloy coatings. Appl. Surf. Sci., 2011, 257(13): 5919.

[9]

Alimadadi H., Ahmadi M., Aliofkhazraei M., Younesi S.R. Corrosion properties of electrodeposited nanocrystalline and amorphous patterned Ni–W alloy. Mater. Des., 2009, 30(4): 1356.

[10]

Younes-Metzler O., Zhu L., Gileadi E. The anomalous codeposition of tungsten in the presence of nickel. Electrochim. Acta, 2003, 48(18): 2551.

[11]

Srinivasan K.N., Venkatakrishna Iyer S. The absorption of addition agents in acid zinc plating. Bull. Electrochem., 1990, 6(1): 35.

[12]

Ravindran V., Muralidharan V.S. Characterization of zinc–nickel alloy electrodeposits obtained from sulphamate bath containing substituted aldehydes. Bull. Mater. Sci., 2006, 29(3): 293.

[13]

El-Etre A.Y. Inhibition of acid corrosion of aluminum using vanillin. Corros. Sci., 2001, 43(6): 1031.

[14]

Abdallah M., Zaafarany I., Fouda A.S., Abd El-Kader D. Inhibition of zinc corrosion by Some benzaldehyde derivatives in HCl Solution. J. Mater. Eng. Perform., 2012, 21(6): 995.

[15]

Indyka P., Beltowska-Lehman E., Tarkowski L., Bigos A., García-Lecinac E. Structure characterization of nanocrystalline Ni–W alloys obtained by electrodeposition. J. Alloys Compd., 2014, 590, 75.

[16]

Nayana K.O., Venkatesha T.V. Effect of ethyl vanillin on ZnNi alloy electrodeposition and its properties. Bull. Mater. Sci., 2014, 37(5): 1137.

[17]

Bučko M., Lačnjevac U., Bajat J. The influence of substituted aromatic aldehydes on the electrodeposition of Zn–Mn alloy. J. Serb. Chem. Soc., 2013, 78(10): 1569.

[18]

Lin Z.F., Li X.B., Xu L.K. Electrodeposition and corrosion behavior of zinc–nickel films obtained from acid solutions: effects of TEOS as additive. Int. J. Electrochem. Sci., 2012, 7(12): 12507.

[19]

Sriraman K.R., Raman S.G.S., Seshadri S.K. Corrosion behaviour of electrodeposited nanocrystalline Ni–W and Ni–Fe–W alloys. Mater. Sci. Eng. A, 2007, 460–461, 39.

[20]

Wei G.Y., Ge H.L., Zhu X., Wu Q., Yu J.Y., Wang B.Y. Effect of organic additives on characterization of electrodeposited Co-W thin films. Appl. Surf. Sci., 2007, 253(18): 7461.

[21]

Praveen Kumar C.M., Venkatesha T.V. Characterization and corrosion behavior of electrodeposited Zn and Zn–BN coatings. Synth. React. Inorg., 2012, 42(3): 351.

[22]

Tohidi T., Jamshidi-Ghaleh K. Effect of TEA on photoluminescence properties of PbS nanocrystalline thin films. Appl. Phys. A, 2015, 118(4): 1247.

[23]

Zemanová M., Kurinec R., Jorík V., Kadlecíová M. Ni–W alloy coatings deposited from a citrate electrolyte. Chem. Pap., 2012, 66(5): 492.

AI Summary AI Mindmap
PDF

109

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/