Synthesis of aluminum nitride in a coke–calcium reduction bed using nitrogen in air

Ehsan Noorizadeh Dehkordi , H. R. Samim Banihashemi , R. Naghizadeh , H. R. Rezaie , M. Goodarzi

International Journal of Minerals, Metallurgy, and Materials ›› 2015, Vol. 22 ›› Issue (9) : 972 -976.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2015, Vol. 22 ›› Issue (9) : 972 -976. DOI: 10.1007/s12613-015-1157-0
Article

Synthesis of aluminum nitride in a coke–calcium reduction bed using nitrogen in air

Author information +
History +
PDF

Abstract

An experimental study on the heating of a mixture of aluminum and lithium hydroxide (LiOH) powders in a reductive bed under air atmosphere is reported. The formation of aluminum nitride (AlN) during this process was the focus of this study. The formation of AlN was achieved using LiOH as an additive and heating the sample in a resistance furnace in a specially designed double crucible within a bed of a mixture of coke and filamentous calcium. The temperature range of the reaction was between 700°C and 1100°C. The optimum temperature of 1100°C and the optimum LiOH amount (5wt%) required to achieve maximum yield were determined by powder X-ray diffraction (XRD) analysis. Scanning electron microscopy (SEM) micrographs clearly indicated the transformation of grain structures from rods (700°C) to cauliflower shapes (1100°C).

Keywords

aluminum nitride / synthesis / nitridation / lithium hydroxide / reaction temperature

Cite this article

Download citation ▾
Ehsan Noorizadeh Dehkordi, H. R. Samim Banihashemi, R. Naghizadeh, H. R. Rezaie, M. Goodarzi. Synthesis of aluminum nitride in a coke–calcium reduction bed using nitrogen in air. International Journal of Minerals, Metallurgy, and Materials, 2015, 22(9): 972-976 DOI:10.1007/s12613-015-1157-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Heimann R.B. Classic and Advanced Ceramics: From Fundamentals to Applications, 2010, Weinheim, Wiley-VCH, 452.

[2]

Kameshima Y., Irie M., Yasumori A., Okada K. Low temperature synthesis of AlN by addition of various Li-salts. J. Eur. Ceram. Soc., 2004, 24(15-16): 3801.

[3]

Gromov A., Ilyin A., Ditts A., Vereshchagin V. Combustion of Al–Al2O3 mixtures in air. J. Eur. Ceram. Soc., 2005, 25(9): 1575.

[4]

Gromov A., Vereshchagin V. Study of aluminum nitride formation by superfine aluminum powder combustion in air. J. Eur. Ceram. Soc., 2004, 24(9): 2879.

[5]

Nagano M., Nagashima S., Maeda H., Kato A. Sintering behavior of Al2TiO5 base ceramics and their thermal properties. Ceram. Int., 1999, 25(8): 681.

[6]

Ring T.A. Fundamentals of Ceramic Powder Processing and Synthesis, 1996, Waltham, Academic Press, 142.

[7]

Kubashewski O., Alcock C.B., Spencer P.J. Materials Thermochemistry, 1993, Oxford, Pergamon Press, 361.

[8]

Gaskell D.R. Introduction to the Thermodynamics of Materials, 2008, New York, Taylor & Francis, 349.

[9]

Komeya K., Matsukaze N., Meguro T. Synthesis of AlN by direct nitridation of Al alloys. J. Ceram. Soc. Jpn., 1993, 101(1180): 1319.

[10]

Bandyopadhyay S., Rixecker G., Aldinger F., Pal S., Mukherjee K., Maiti H.S. Effect of reaction parameters on γ-AlON formation from Al2O3 and AlN. J. Am. Ceram. Soc., 2002, 87(4): 1010.

[11]

Lefort P., Billy M. Mechanism of AlN formation through the carbothermal reduction of Al2O3 in a flowing N2 atmosphere. J. Am. Ceram. Soc., 1993, 76(9): 2295.

[12]

Cho Y.W., Charles J.A. Synthesis of nitrogen ceramic powders by carbothermal reduction and nitridation: Part 3. Aluminium nitride. Mater. Sci. Technol., 1991, 7(6): 495.

AI Summary AI Mindmap
PDF

134

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/