Evolution of the texture and mechanical properties of 2060 alloy during bending

Xiao Jin , Bao-qin Fu , Cheng-lu Zhang , Wei Liu

International Journal of Minerals, Metallurgy, and Materials ›› 2015, Vol. 22 ›› Issue (9) : 966 -971.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2015, Vol. 22 ›› Issue (9) : 966 -971. DOI: 10.1007/s12613-015-1156-1
Article

Evolution of the texture and mechanical properties of 2060 alloy during bending

Author information +
History +
PDF

Abstract

In this study, we examined the evolution of the texture and mechanical properties of 2060 (T8) alloy during bending. A pixel rotation method (PRM) was proposed and used to characterize the textural evolution during bending determined by electron backscatter diffraction. The results showed that the textural components changed insignificantly, with the exception of a decrease in the cube texture. The tensile and yielding properties of the alloy were evaluated at three different orientations with respect to the rolling direction. The mechanical strength was found to increase in three directions with decreasing bending radius; thus, it was concluded that the 2060 (T8) alloy sheet satisfies the usage requirement after bending deformation.

Keywords

aluminum−lithium alloys / bending / texture / mechanical properties

Cite this article

Download citation ▾
Xiao Jin, Bao-qin Fu, Cheng-lu Zhang, Wei Liu. Evolution of the texture and mechanical properties of 2060 alloy during bending. International Journal of Minerals, Metallurgy, and Materials, 2015, 22(9): 966-971 DOI:10.1007/s12613-015-1156-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Rioja R.J., Liu J. The Evolution of Al–Li base products for aerospace and space applications. Metall. Mater. Trans. A, 2012, 43(9): 3325.

[2]

Zheng Z.Q., Li J.F., Chen Z.G., Li H.Y., Li S.C., Tan C.Y. Alloying and microstructural evolution of Al-Li alloys. Chin. J. Nonferrous Met., 2011, 21(10): 2337.

[3]

Karabin L.M., Bray G.H., Rioja R.J., Venema G. Al–Li–Cu–Mg–(Ag) products for lower wing skin applications. ICAA13: 13th International Conference on Aluminum Alloys, 2012 529.

[4]

Rioja R.J. Fabrication methods to manufacture isotropic Al–Li products for space and aerospace applications. Mater. Sci. Eng. A, 1998, 257(1): 100.

[5]

Chen Z.W., Zhao J., Li S.S. Texture evolution of Al–Mg–Li aeronautical alloys in in-situ tension. Int. J. Miner. Metall. Mater., 2012, 19(12): 1100.

[6]

Vasudévan A.K., Przystupa M.A., Fricke W.G. Effect of composition on crystallographic texture in hot-rolled Al-Li-Cu alloys. Mater. Sci. Eng. A, 1996, 208(2): 172.

[7]

Zhu Y.B. Investigation on Texture and Anisotropy of 2198 Aluminum–Lithium Alloy, 2012, Shenyang, Shenyang Aerospace University, 72.

[8]

Singh R.K., Singh A.K., Prasad N.E. Texture and mechanical property anisotropy in an Al–Mg–Si–Cu alloy. Mater. Sci. Eng. A, 2000, 277(1-2): 114.

[9]

Contrepois Q., Maurice C., Driver J.H. Hot rolling textures of Al–Cu–Li and Al–Zn–Mg–Cu aeronautical alloys: experiments and simulations to high strains. Mater. Sci. Eng. A, 2010, 527(27-28): 7305.

[10]

Zhong J., Jia M., Fan C.P., Zheng Z.J., Li H.P., Wu Q.P. Fatigue crack propagation behavior of 2050 aluminum alloy. Rare Met. Mater. Eng., 2014, 43(8): 1944.

[11]

Liu J.N., Liu W., Tang G.Y., Zhu R.F. Influence of intermediate annealing on the microstructure and texture of Ni-9.3at%W substrates. Int. J. Miner. Metall. Mater., 2014, 21(2): 162.

[12]

Zhang Y.H., Yao Z.Y., Huang G.J., Liu Q. EBSD investigation on microstructure and texture in rolling aluminum alloys. J. Chin. Electron Microsc. Soc., 2009, 28(1): 43.

[13]

Zhang N., Yang P., Mao W.M. Influence of columnar grains on the cold rolling texture evolution in Fe-3%Si electrical steel. Acta Metall. Sin., 2012, 48(7): 782.

[14]

Cabibbo M., Evangelista E., Scalabroni C. EBSD FEG-SEM, TEM and XRD techniques applied to grain study of a commercially pure 1200 aluminum subjected to equalchannel angular-pressing. Micron, 2005, 36(5): 401.

[15]

Davidkov A., Petrov R.H., De Smet P., Schepers B., Kestens L.A.I. Microstructure controlled bending response in AA6016 Al alloys. Mater. Sci. Eng. A, 2011, 528(22-23): 7068.

[16]

Takayama Y., Szpunar J.A., Jeong H. Cube texture development in an Al–Mg–Mn alloy sheet worked by continuous cyclic bending. Mater. Trans., 2001, 42(10): 2050.

[17]

Xiao H., Song G.S., Yan C., Zhang S.H., Ruan L.Q., Zhang X.G. Microstructure evolution of AZ31 magnesium alloy profile during warm bending process. Chin. J. Nonferrous Met., 2011, 21(8): 1814.

[18]

Cho J.H., Kim H.W., Kang S.B., Han T.S. Bending behavior, and evolution of texture and microstructure during differential speed warm rolling of AZ31B magnesium alloys. Acta Mater., 2011, 59(14): 5638.

[19]

Shkatulyak N.M., Bryukhanov A.A., Rodman M., Usov V.V., Schaper M., Haferkamp G., Nastasyuk V.A. Reverse bending effect on the texture, structure, and mechanical properties of sheet copper. Phys. Met. Metallogr., 2012, 113(8): 810.

[20]

Jata K.V., Panchanadeeswaran S., Vasudevan A.K. Evolution of texture, microstructure and mechanical property anisotropy in an Al–Li–Cu alloy. Mater. Sci. Eng. A, 1998, 257(1): 37.

[21]

Iacono C., Sinke J., Benedictus R. Prediction of minimum bending ratio of aluminum sheets from tensile material properties. J. Manuf. Sci. Eng., 2010, 132, 021001.

[22]

Pan J.S., Tian M.B., Tong J.M. Fundamentals of Materials Science, 1998, Beijing, Tsinghua University Press, 153.

[23]

Rollett A., Humphreys F.J., Rohrer G.S., Hatherly M. Recrystallization and Related Annealing Phenomena, 2004, Oxford, Elsevier, 398.

[24]

L. Dillamore I., Katoh H., Haslam K. The nucleation of recrystallisation and the development of textures in heavily compressed iron–carbon alloys. Texture, 1974, 1(3): 151.

AI Summary AI Mindmap
PDF

117

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/