A novel diffusion model considering curvature radius at the bonding interface in a titanium/steel explosive clad plate

Hai-tao Jiang , Qiang Kang , Xiao-qian Yan

International Journal of Minerals, Metallurgy, and Materials ›› 2015, Vol. 22 ›› Issue (9) : 956 -965.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2015, Vol. 22 ›› Issue (9) : 956 -965. DOI: 10.1007/s12613-015-1155-2
Article

A novel diffusion model considering curvature radius at the bonding interface in a titanium/steel explosive clad plate

Author information +
History +
PDF

Abstract

This article introduces an element diffusion behavior model for a titanium/steel explosive clad plate characterized by a typical curved interface during the heat-treatment process. A series of heat-treatment experiments were conducted in the temperature range from 750°C to 950°C, and the effects of heat-treatment parameters on the microstructural evolution and diffusion behavior were investigated by optical microscopy, scanning electron microscopy, X-ray diffraction analysis, and electron-probe microanalysis. Carbon atoms within the steel matrix were observed to diffuse toward the titanium matrix and to aggregate at the bonding interface at 850°C or lower; in contrast, when the temperature exceeded 850°C, the mutual diffusion of Ti and Fe occurred, along with the diffusion of C atoms, resulting in the formation of Ti–Fe intermetallics (Fe2Ti/FeTi). The diffusion distances of C, Ti, and Fe atoms increased with increasing heating temperature and/or holding time. On the basis of this diffusion behavior, a novel diffusion model was proposed. This model considers the effects of various factors, including the curvature radius of the curved interface, the diffusion coefficient, the heating temperature, and the holding time. The experimental results show good agreement with the calculated values. The proposed model could clearly provide a general prediction of the elements’ diffusion at both straight and curved interfaces.

Keywords

explosive bonding / metal cladding / diffusion models / interfaces / heat treatment

Cite this article

Download citation ▾
Hai-tao Jiang, Qiang Kang, Xiao-qian Yan. A novel diffusion model considering curvature radius at the bonding interface in a titanium/steel explosive clad plate. International Journal of Minerals, Metallurgy, and Materials, 2015, 22(9): 956-965 DOI:10.1007/s12613-015-1155-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Shao D.S., Yan J.C., Wang Y., Yang S.Q. Relative slipping of interface of titanium alloy to stainless steel during vacuum hot roll bonding. Mater. Sci. Eng. A, 2009, 499(1-2): 282.

[2]

Mousavi S.A.A.A., Sartangi P.F. Experimental investigation of explosive welding of cp-titanium/AISI 304 stainless steel. Mater. Des., 2009, 30(3): 459.

[3]

Song J., Kostka A., Veehmayer M., Raabe D. Hierarchical microstructure of explosive joints: example of titanium to steel cladding. Mater. Sci. Eng. A, 2011, 528(6): 2641.

[4]

Manikandan P., Hokamoto K., Fujita M., Raghukandan K., Tomoshige R. Control of energetic conditions by employing interlayer of different thickness for explosive welding of titanium/304 stainless steel. J. Mater. Process. Technol., 2008, 195(1-3): 232.

[5]

Kundu S., Roy D., Chatterjee S., Olson D., Mishra B. Influence of interface microstructure on the mechanical properties of titanium/17-4 PH stainless steel solid state diffusion bonded joints. Mater. Des., 2012, 37, 560.

[6]

Kundu S., Sam S., Chatterjee S. Interface microstructure and strength properties of Ti–6Al–4V and microduplex stainless steel diffusion bonded joints. Mater. Des., 2011, 32(5): 2997.

[7]

Yan X.B., Li Z.H., Peng W.A. Heating on interface mechanical properties and microstructure of titanium-steel explosion composite plate. Rare Met. Mater. Eng., 1990, 5, 38.

[8]

Mousavi S.A.A.A., Sartangi P.F. Effect of post-weld heat treatment on the interface microstructure of explosively welded titanium–stainless steel composite. Mater. Sci. Eng. A, 2008, 494(1-2): 329.

[9]

Xia C.Q., Jin Z.P. On the evolution of microstructure and diffusion paths in the titanium–steel explosion weld interface during heat treatment. J. Less Common. Met., 1990, 162(2): 315.

[10]

Yang Y., Zhang X.M. Diffusion reaction in the interface of titanium/mild steel composite. J. Cent. South. Univ. Technol., 1996, 3(2): 135.

[11]

Yang Y., Zhang X.M., Li Z.H., Li Q.Y. Diffusion reaction inTA2/A3 explosive cladding interface. Acta Metall. Sin., 1995, 31(4): 188.

[12]

Chiba A., Nishida M., Morizono Y., Imamura K. Bonding characteristics and diffusion barrier effect of the TiC phase formed at the bonding interface in an explosively welded titanium/high-carbon steel clad. J. Phase Equilibria, 1995, 16(5): 411.

[13]

Morizono Y., Nishida M., Chiba A., Yamamuro T. Effect of heat treatment on formation of columnar ferrite structure in explosively welded titanium/hypoeutectoid steel joints. Mater. Sci. Forum, 2004, 465-466, 373.

[14]

Lee C.S., Li H., Chandel R.S. Stimulation model for the vacuum-free diffusion bonding of aluminium metalmatrix composite. J. Mater. Process. Technol., 1999, 89-90, 344.

[15]

van Dal M.J.H., Huibers D.G.G.M., Kodentsov A.A., van Loo F.J.J. Formation of Co–Si intermetallics in bulk diffusion couples: Part I. Growth kinetics and mobilities of species in the silicide phases. Intermetallics, 2001, 9(5): 409.

[16]

van Dal M.J.H., Kodentsov A.A., van Loo F.J.J. Formation of Co–Si intermetallics in bulk diffusion couples: Part II. Manifestations of the Kirkendall effect accompanying reactive diffusion. Intermetallics, 2001, 9(6): 451.

[17]

Li W.S., Shen H.F., Liu B.C. Numerical simulation of macrosegregation in steel ingots using a two-phase model. Int. J. Miner. Metall. Mater., 2012, 19(9): 787.

[18]

Yu W.H., Xu L.T., Feng G.H., Wu C.J., Zhou C., Wang H.F. Modeling the austenite-ferrite transformation in microalloyed steel P510L. Int. J. Miner. Metall. Mater., 2010, 17(5): 558.

[19]

Han Y.Q., Ben L.H., Yao J.J., Feng S.W., Wu C.J. Investigation on the interface of Cu/Al couples during isothermal heating. Int. J. Miner. Metall. Mater., 2015, 22(3): 309.

[20]

Paul A., van Dal M.J.H., Kodentsov A.A., van Loo F.J.J. The kirkendall effect in multiphase diffusion. Acta Mater., 2004, 52(3): 623.

[21]

Fernadus M.J., Senthilkumar T., Balasubramanian V., Rajakumar S. Optimising diffusion bonding parameters to maximize the strength of AA6061 aluminium and AZ31B magnesium alloy joints. Mater. Des., 2012, 33, 31.

[22]

Chen H., Zhong Y., Hu W., Gottstein G. A diffusion bonding model for the consolidation process of matrix-coated fiber- reinforced composites. Mater. Sci. Eng. A, 2007, 452-453, 625.

[23]

Huang J.H. Diffusion in the Metal and Alloys, 1996, Beijing, Metallurgical Industry Press, 54.

[24]

Martin J.W., Doherty R.D., Cantor B. Stability of Microstructure in Metallic Systems, 1997, United Kingdom, Cambridge University Press, 244.

AI Summary AI Mindmap
PDF

117

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/