Influence of rapid heating process on the microstructure and tensile properties of high-strength ferrite–martensite dual-phase steel

Pei Li , Jun Li , Qing-ge Meng , Wen-bin Hu , Chun-fu Kuang

International Journal of Minerals, Metallurgy, and Materials ›› 2015, Vol. 22 ›› Issue (9) : 933 -941.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2015, Vol. 22 ›› Issue (9) : 933 -941. DOI: 10.1007/s12613-015-1152-5
Article

Influence of rapid heating process on the microstructure and tensile properties of high-strength ferrite–martensite dual-phase steel

Author information +
History +
PDF

Abstract

Three low-carbon dual-phase (DP) steels with almost constant martensite contents of 20vol% were produced by intercritical annealing at different heating rates and soaking temperatures. Microstructures prepared at low temperature (1043 K, FH1) with fast-heating (300 K/s) show banded ferrite/martensite structure, whereas those soaked at high temperature (1103 K, FH2) with fast heating reveal blocky martensite uniformly distributed in the fine-grained ferrite matrix. Their mechanical properties were tested under tensile conditions and compared to a slow-heated (5 K/s) reference material (SH0). The tensile tests indicate that for a given martensite volume fraction, the yield strength and total elongation values are noticeably affected by the refinement of ferrite grains and the martensite morphology. Metallographic observations reveal the formation of microvoids at the ferrite/martensite interface in the SH0 and FH2 samples, whereas microvoids nucleate via the fracture of banded martensite particles in the FH1 specimen. In addition, analyses of the work-hardening behaviors of the DP microstructures using the differential Crussard–Jaoul technique demonstrate two stages of work hardening for all samples.

Keywords

high-strength steel / martensite / ferrite / heating / microstructure / tensile properties / grain refinement

Cite this article

Download citation ▾
Pei Li, Jun Li, Qing-ge Meng, Wen-bin Hu, Chun-fu Kuang. Influence of rapid heating process on the microstructure and tensile properties of high-strength ferrite–martensite dual-phase steel. International Journal of Minerals, Metallurgy, and Materials, 2015, 22(9): 933-941 DOI:10.1007/s12613-015-1152-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hüper T., Endo S., Ishikawa N., Osawa K. Effect of volume fraction of constituent phases on the stress–strain relationship of dual phase steels. ISIJ Int., 1999, 39(3): 288.

[2]

Sarwar M., Ahmad E., Qureshi K.A., Manzoor T. Influence of epitaxial ferrite on tensile properties of dual phase steel. Mater. Des., 2007, 28(1): 335.

[3]

Farabi N., Chen D.L., Zhou Y. Microstructure and mechanical properties of laser welded dissimilar DP600/DP980 dual-phase steel joints. J. Alloys Compd., 2011, 509(3): 982.

[4]

Lesch C., A´lvarez P., Bleck W., Sevillano J.G. Rapid transformation annealing: a novel method for grain refinement of cold-rolled low-carbon steels. Metall. Mater. Trans. A, 2007, 38, 1882.

[5]

Massardier V., Ngansop A., Fabrègue D., Merlin J. Identification of the parameters controlling the grain refinement of ultra-rapidly annealed low carbon Al-killed steels. Mater. Sci. Eng. A, 2010, 527(21-22): 5654.

[6]

Bag A., Ray K.K., Dwarakadasa E.S. Influence of martensite content and morphology on tensile and impact properties of high-martensite dual-phase steels. Metall. Mater. Trans. A, 1999, 30(5): 1193.

[7]

Erdogan M., Tekeli S. The effect of martensite particle size on tensile fracture of surface-carburised AISI 8620 steel with dual phase core microstructure. Mater. Des., 2002, 23(7): 597.

[8]

Das D., Chattopadhyay P. P. Influence of martensite morphology on the work-hardening behavior of high strength ferrite–martensite dual-phase steel. J. Mater. Sci., 2009, 44(11): 2957.

[9]

Huang J., Poole W.J., Militzer M. Austenite formation during intercritical annealing. Metall. Mater. Trans. A, 2004, 35(11): 3363.

[10]

Mohanty R.R., Girina O.A., Fonstein N.M. Effect of heating rate on the austenite formation in low-carbon high-strength steels annealed in the intercritical region. Metall. Mater. Trans. A, 2011, 42(12): 3680.

[11]

Azizi-Alizamini H., Militzer M., J. Poole W. Austenite formation in plain low-carbon steels. Metall. Mater. Trans. A, 2011, 42(6): 1544.

[12]

Mazinani M., Poole W.J. Effect of martensite plasticity on the deformation behavior of a low-carbon dual-phase steel. Metall. Mater. Trans. A, 2007, 38(2): 328.

[13]

Abràmoff M.D., Magalhães P.J., Ram S.J. Image processing with ImageJ. Biophotonics Int., 2004, 11(7): 36.

[14]

Li P., Li J., Meng Q.G., Hu W.B., Xu D.C. Effect of heating rate on ferrite recrystallization and austenite formation of cold-roll dual phase steel. J. Alloys Compd., 2013, 578, 320.

[15]

Xu D.C., Li J., Meng Q.G., Liu Y.D., Li P. Effect of heating rate on microstructure and mechanical properties of TRIP-aided multiphase steel. J. Alloys Compd., 2014, 614, 94.

[16]

Karmakar A., Karani A., Patra S., Chakrabarti D. Development of bimodal ferrite-grain structures in low-carbon steel using rapid intercritical annealing. Metall. Mater. Trans. A, 2013, 44(5): 2041.

[17]

Rocha R.O., Melo T., Pereloma E.V., Santos D.B. Microstructural evolution at the initial stages of continuous annealing of cold rolled dual-phase steel. Mater. Sci. Eng. A, 2005, 391(1-2): 296.

[18]

Chang P.H., Preban A.G. The effect of ferrite grain size and martensite volume fraction on the tensile properties of dual phase steel. Acta Metall., 1985, 33(5): 897.

[19]

Tasan C.C., Hoefnagels J.P.M., Geers M.G.D. Microstructural banding effects clarified through micrographic digital image correlation. Scripta Mater., 2010, 62(11): 835.

[20]

Movahed P., Kolahgar S., Marashi S.P.H., Pouranvari M., Parvin N. The effect of intercritical heat treatment temperature on the tensile properties and work hardening behavior of ferrite–martensite dual phase steel sheets. Mater. Sci. Eng. A, 2009, 518(1-2): 1.

[21]

Jena A.K., Chaturvedi M.C. On the effect of the volume fraction on martensite on the tensile strength of dual-phase steel. Mater. Sci. Eng. A, 1988, 100, 1.

[22]

Calcagnotto M., Ponge D., Raabe D. Microstructure Control during fabrication of ultrafine grained dual-phase steel: characterization and effect of intercritical annealing parameters. ISIJ Int., 2012, 52(5): 874.

[23]

Zener C., Hollomon J. Effect of strain rate upon plastic flow of steel. J. Appl. Phys., 1944, 15, 22.

[24]

Lian J., Jiang Z., Liu J. Theoretical model for the tensile work hardening behaviour of dual-phase steel. Mater. Sci. Eng. A, 1991, 147(1): 55.

[25]

Jha B.K., Avtar R., Dwivedi V.S., Ramaswamy V. Applicability of modified Crussard-Jaoul analysis on the deformation behaviour of dual-phase steels. J. Mater. Sci. Lett., 1987, 6, 891.

[26]

Nouri A., Saghafian H., Kheirandish S. Influence of volume fraction of martensite on the work hardening behaviour of two dual-phase steels with high and low silicon contents. Int. J. Mater. Res., 2010, 101(10): 1286.

[27]

Tomita Y. Effect of morphology of second-phase martensite on tensile properties of Fe-0.1 C dual phase steels. J. Mater. Sci., 1990, 25(12): 5179.

AI Summary AI Mindmap
PDF

118

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/