PDF
Abstract
To achieve high efficiency utilization of high-chromium vanadium–titanium magnetite (V–Ti–Cr) fines, an investigation of V–Ti–Cr fines was conducted using a sinter pot. The chemical composition, particle parameters, and granulation of V–Ti–Cr mixtures were analyzed, and the effects of sintering parameters on the sintering behaviors were investigated. The results indicated that the optimum quicklime dosage, mixture moisture, wetting time, and granulation time for V–Ti–Cr fines are 5wt%, 7.5wt%, 10 min, and 5–8 min, respectively. Meanwhile, the vertical sintering speed, yield, tumbler strength, and productivity gains were shown to be 21.28 mm/min, 60.50wt%, 58.26wt%, and 1.36 t·m−2·h−1, respectively. Furthermore, the consolidation mechanism of V–Ti–Cr fines was clarified, revealing that the consolidation of a V–Ti–Cr sinter requires an approximately 14vol% calcium ferrite liquid-state, an approximately 15vol% silicate liquid-state, a solid-state reaction, and the recrystallization of magnetite. Compared to an ordinary sinter, calcium ferrite content in a V–Ti–Cr sinter is lower, while the perovskite content is higher, possibly resulting in unsatisfactory sinter outcomes.
Keywords
magnetite
/
chromium
/
vanadium
/
titanium
/
ore sintering
/
consolidation
/
mineralogy
Cite this article
Download citation ▾
Mi Zhou, Tao Jiang, Song-tao Yang, Xiang-xin Xue.
Sintering behaviors and consolidation mechanism of high-chromium vanadium and titanium magnetite fines.
International Journal of Minerals, Metallurgy, and Materials, 2015, 22(9): 917-925 DOI:10.1007/s12613-015-1150-7
| [1] |
Moskalyk R.R., Alfantazi A.M. Processing of vanadium: a review. Miner. Eng., 2003, 16(9): 793.
|
| [2] |
Hu K.J., Xi G., Yao J. Status quo of manufacturing techniques of titanium slag in the world. World Nonferrous Met., 2006, 12, 26.
|
| [3] |
Xue X. Research on direct reduction of vanadictianomagnetite. Iron Steel Vandium Titanium, 2007, 28(3): 37.
|
| [4] |
Deng J., Xue X., Liu G.G. Current situation and development of comprehensive utilization of vanadium-bearing titanomagnetite at Pangang. J. Mater. Metall., 2007, 6(2): 83.
|
| [5] |
Vidyashankar H.V., Govindaiah S. Ore petrology of the V–Ti magnetite (lodestone) layers of the Kurihundi area of Sargur schist belt, Dharwar craton. J.Geol. Soc. India, 2009, 74(1): 58.
|
| [6] |
Beura D., Acharya D., Singh P., Acharya S. Högbomite associated with vanadium bearing titaniferous magnetite of Mafic-Ultramafic suite of Moulabhanj igneous complex, Orissa, India. J. Miner. Mater. Charact. Eng., 2009, 8(9): 745.
|
| [7] |
Si X.G., Lu X.G., Li C.W., Li C.H., Ding W.Z. Phase transformation and reduction kinetics during the hydrogen reduction of ilmenite concentrate. Int. J. Miner. Metall. Mater., 2012, 19(5): 384.
|
| [8] |
Chen S.Y., Chu M.S. Metalizing reduction and magnetic separation of vanadium titano-magnetite based on hot briquetting. Int. J. Miner. Metall. Mater., 2014, 21(3): 225.
|
| [9] |
Zhou M., Yang S.T., Jiang T., Xue X.X. Influence of basicity on high chromium vanadium–titanium magnetite sinter properties, productivity and mineralogy. JOM, 2015, 67(5): 1203.
|
| [10] |
Jena B.C., Dresler W., Reilly I.G. Extraction of titanium, vanadium, and iron from titanomagnetite deposits at Pipestone Lake, Manitoba, Canada. Miner. Eng., 1995, 8(1-2): 159.
|
| [11] |
Sole K.C. Recovery of titanium from the leach liquors of titaniferous magnetites by solvent extraction: Part 1. Review of the literature and aqueous thermodynamics. Hydrometallurgy, 1999, 51(2): 239.
|
| [12] |
Du H.G. Principle of Blast Furnaces Melting Vanadium–Titanium Magnetite, 1996, Beijing, Science Press, 9.
|
| [13] |
Zhang Y., Zhou M., Chu M.S., Xue X.X., Jiang M.F. Basic sintering characteristics of imported vanadium and titanium magnetite with high Chrome content. Iron Steel, 2012, 47(12): 18.
|
| [14] |
Zhang Y., Zhou M., Chu M.S., Xue X.X. Sintering experiments of high-Cr vanadium and titanium magnetite. J. Northeast. Univ. Nat. Sci., 2013, 34(3): 383.
|
| [15] |
Zhu D.Q., Zhang K.C., Pan J., Fan X.H., Hu Y.M., John C. Effect of fluxes on high iron and low silica sintering. J. Cent. South Univ. Technol., 2003, 10(3): 177.
|
| [16] |
Sassa Y., Ishii H., Nakajima M. Effect of amount of CaO added on burnt quasi-particles strength. Nisshin Steel Tech. Rep., 1993, 67, 1.
|
| [17] |
Li S.D. Research on granulation of mix iron fines. Sintering Pelletizing, 1988, 13(6): 7.
|
| [18] |
Zhang S.J., Wang S.T. Formation mechanism of acicular calcium ferrite. Iron Steel, 1992, 27(7): 7.
|
| [19] |
Huang X.J., Guo Y.F., Zhang J., Guo X.M. Effect of oxygen partial pressure on the sintering process of iron ores. J. Univ. Sci. Technol. Beijing, 2013, 35(12): 1565.
|
| [20] |
Zhu D.Q., Zhang K.C., He A.P., Fan X.H., Zeng X.Z., Xiao L.H. The effect of enhances granulating on high Fe and low SiO2 sinter. Sintering Pelletizing, 2003, 28(1): 9.
|
| [21] |
Bai Y.Q., Cheng S.S., Bai Y.M. Analysis of vanadium- bearing titanomagnetite sintering process by dissection of sintering bed. J. Iron Steel Res. Int., 2011, 18(6): 8.
|
| [22] |
Zhou M., Yang S.T., Jiang T., Xue X.X. Influence of MgO in form of magnesite on properties and mineralogy of high chromium, vanadium, titanium magnetite sinters. Ironmaking Steelmaking, 2015, 42(3): 217.
|
| [23] |
Zhou M. Fundamental Investigation on Cr-bearing Vanadium and Titanium Magnetite Ore in Sintering and Iron-making Process, 2015, Shenyang, Northeastern University, 111.
|