Molten salt synthesis of mullite nanowhiskers using different silica sources

Tao Yang , Peng-long Qiu , Mei Zhang , Kuo-Chih Chou , Xin-mei Hou , Bai-jun Yan

International Journal of Minerals, Metallurgy, and Materials ›› 2015, Vol. 22 ›› Issue (8) : 884 -891.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2015, Vol. 22 ›› Issue (8) : 884 -891. DOI: 10.1007/s12613-015-1146-3
Article

Molten salt synthesis of mullite nanowhiskers using different silica sources

Author information +
History +
PDF

Abstract

Mullite nanowhiskers with Al-rich structure were prepared by molten salt synthesis at 1000°C for 3 h in air using silica, amorphous silica, and ultrafine silica as the silica sources. The phase and morphology of the synthesized products were investigated by X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy, and transmission electron microscopy. A thermogravimetric and differential thermal analysis was carried out to determine the reaction mechanism. The results reveal that the silica sources play an important role in determining the morphology of the obtained mullite nanowhiskers. Clusters and disordered arrangements are obtained using common silica and amorphous silica, respectively, whereas the use of ultrafine silica leads to highly ordered mullite nanowhiskers that are 80−120 nm in diameter and 20−30 μm in length. Considering the growth mechanisms, mullite nanowhiskers in the forms of clusters and highly ordered arrangements can be attributed to heterogeneous nucleation, whereas disordered mullite nanowhiskers are obtained by homogenous nucleation.

Keywords

mullite / nanowhiskers / morphology / silica / molten salt synthesis / reaction mechanisms

Cite this article

Download citation ▾
Tao Yang, Peng-long Qiu, Mei Zhang, Kuo-Chih Chou, Xin-mei Hou, Bai-jun Yan. Molten salt synthesis of mullite nanowhiskers using different silica sources. International Journal of Minerals, Metallurgy, and Materials, 2015, 22(8): 884-891 DOI:10.1007/s12613-015-1146-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wang W., McCool G., Kapur N., Yuan G., Shan B., Nguyen M., Graham U.M., Davis B.H., Jacobs G., Cho K., Hao X.K. Mixed-phase oxide catalyst based on Mn-Mullite (Sm, GD) Mn2O5 for NO oxidation in diesel exhaust. Science, 2012, 337(6096): 832.

[2]

Tian S., Zhou Q., Li C.H., Gu Z.M., Lombardi J.R., Zheng J.W. Exploring the chemical enhancement of surface-enhanced raman scattering with a designed silver/Silica cavity substrate. J. Phys. Chem. C, 2012, 117(1): 556.

[3]

Qian X.M., Peng X.H., Ansari D.O., Yin-Goen Q., Chen G.Z., Shin D.M., Yang L., Young A.N., Wang M.D., Nie S.M. In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat. Biotechnol., 2008, 26(1): 83.

[4]

Casadio F., Leona M., Lombardi J.R., Van Duyne R. Identification of organic colorants in fibers, paints, and glazes by surface enhanced Raman spectroscopy. Acc. Chem. Res., 2010, 43(6): 782.

[5]

Li J.F., Huang Y.F., Ding Y., Yang Z.L., Li S.B., Zhou X.S., Fan F.R., Zhang W., Zhou Z.Y., Wu D.Y., Ren B., Wang Z.L., Tian Z.Q. Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature, 2010, 464(7284): 392.

[6]

Schwartzberg A.M., Grant C.D., Wolcott A., Talley C.E., Huser T.R., Bogomolni R., Zhang J.Z. Unique gold nanoparticle aggregates as a highly active surface-enhanced Raman scattering substrate. J. Phys. Chem. B, 2004, 108(50): 19191.

[7]

Sasic S., Itoh T., Ozaki Y. Detailed analysis of single- molecule surface-enhanced resonance Raman scattering spectra of Rhodamine 6G obtained from isolated nano-aggregates of colloidal silver. J. Raman Spectrosc., 2005, 36(6-7): 593.

[8]

Yoon I., Kang T., Choi W., Kim J., Yoo Y., Joo S.W., Park Q.H., Ihee H., Kim B. Single nanowire on a film as an efficient SERS-active platform. J. Am. Ceram. Soc., 2008, 131(2): 758.

[9]

Zhang Y.B., Ding Y.P., Gao J.Q., Yang J.F. Mullite fibres prepared by sol-gel method using polyvinyl butyral. J. Eur. Ceram. Soc., 2009, 29(6): 1101.

[10]

Bagchi B., Das S., Bhattacharya A., Basu R., Nandy P. Nanocrystalline mullite synthesis at a low temperature: effect of copper ions. J. Am. Ceram. Soc., 2009, 92(3): 748.

[11]

Kong L.B., Zhang T.S., Ma J., Boey F.Y.C. Mullitization behavior and microstructural development of B2O3-Al2O3-SiO2 mixtures activated by high-energy ball milling. Solid State Sci., 2009, 11(8): 1333.

[12]

Zhang T.S., Kong L.B., Du Z.H., Ma J., Li S. In situ interlocking structure in gel-derived mullite matrix induced by mechanoactivated commercial mullite powders. Scripta Mater., 2010, 63(11): 1132.

[13]

Zhang T.S., Kong L.B., Du Z.H., Ma J., Li S. Tailoring the microstructure of mechanoactivated Al2O3 and SiO2 mixtures with TiO2 addition. J. Alloys Compd., 2010, 506(2): 777.

[14]

Li J.F., Lin H., Li J.B., Wu J. Effects of different potassium salts on the formation of mullite as the only crystal phase in kaolinite. J. Eur. Ceram. Soc., 2009, 29(14): 2929.

[15]

Okada S., Shishido T., Mori T., Iizumi K., Kudou K., Nakajima K. Crystal growth of MgAlB14-type compounds using metal salts and some properties. J. Alloys Compd., 2008, 458(1): 297.

[16]

Park Y.M., Yang T.Y., Yoon S.Y., Stevens R., Park H.C. Mullite whiskers derived from coal fly ash. Mater. Sci. Eng. A, 2007, 454, 518.

[17]

Zhang P.Y., Liu J.C., Du H.Y., Li Z.Q., Li S., Li S., Xu R. Molten salt synthesis of mullite whiskers from various alumina precursors. J. Alloys Compd., 2010, 491(1): 447.

[18]

El Ouatib R., Guillemet S., Durand B., Samdi A., Er Rakho L., Moussa R. Reactivity of aluminum sulfate and silica in molten alkali-metal sulfates in order to prepare mullite. J. Eur. Ceram. Soc., 2005, 25(1): 73.

[19]

Kong L.B., Gan Y.B., Ma J., Zhang T.S., Boey F., Zhang R.F. Mullite phase formation and reaction sequences with the presence of pentoxides. J. Alloys Compd., 2003, 351(1): 264.

[20]

Kim B.M., Cho Y.K., Yoon S.Y., Stevens R., Park H.C. Mullite whiskers derived from kaolin. Ceram. Int., 2009, 35(2): 579.

[21]

Zhang P.Y., Liu J.C., Du H.Y., Li Z.Q., Li S., Chen C. Influence of silica sources on morphology of mullite whiskers in Na2SO4 flux. J. Alloys Compd., 2009, 484(1): 580.

[22]

Levin E.M., McMurdie H.F. Phase Diagrams for Ceramists 1975 Supplement, 1975, Columbus, OH, American Ceramic Society, Inc., 318.

[23]

Zhu B., Li X., Hao R., Wang H. Thermodynamics study on mullite preparation in molten sodium sulfate. J. Chin. Ceram. Soc., 2006, 34(1): 76.

[24]

Huang X.H., Liao J.L., Zheng K., Hu H.H., Wang F.M., Zhang Z.T. Effect of B2O3 addition on viscosity of mould slag containing low silica content. Ironmaking Steekmaking, 2014, 41(1): 67.

AI Summary AI Mindmap
PDF

127

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/