Surface modification of Ti−49.8at%Ni alloy by Ti ion implantation: phase transformation, corrosion, and cell behavior

Yan Li , Ting Zhou , Peng Luo , Shuo-gui Xu

International Journal of Minerals, Metallurgy, and Materials ›› 2015, Vol. 22 ›› Issue (8) : 868 -875.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2015, Vol. 22 ›› Issue (8) : 868 -875. DOI: 10.1007/s12613-015-1144-5
Article

Surface modification of Ti−49.8at%Ni alloy by Ti ion implantation: phase transformation, corrosion, and cell behavior

Author information +
History +
PDF

Abstract

The Ti−49.8at%Ni alloy was modified by Ti ion implantation to improve its corrosion resistance and biocompatibility. The chemical composition and morphologies of the TiNi alloy surface were determined using atomic force microscopy (AFM), auger electron spectroscopy (AES), and X-ray photoelectron spectroscopy (XPS). The results revealed that Ti ion implantation caused the reduction of Ni concentration and the formation of a TiO2 nano-film on the TiNi alloy. The phase transformation temperatures of the Ti–TiNi alloy remained almost invariable after Ti ion implantation. Electrochemical tests indicated that the corrosion resistance of TiNi increased after Ti ion implantation. Moreover, the Ni ion release rate in 0.9% NaCl solution for the TiNi alloy remarkably decreased due to the barrier effect of the TiO2 nano-film. The cell proliferation behavior on Ti-implanted TiNi was better than that on the untreated TiNi after cell culture for 1 d and 3 d.

Keywords

titanium–nickel alloys / surface modification / ion implantation / phase transformation / corrosion resistance / shape memory effect

Cite this article

Download citation ▾
Yan Li, Ting Zhou, Peng Luo, Shuo-gui Xu. Surface modification of Ti−49.8at%Ni alloy by Ti ion implantation: phase transformation, corrosion, and cell behavior. International Journal of Minerals, Metallurgy, and Materials, 2015, 22(8): 868-875 DOI:10.1007/s12613-015-1144-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Otsuka K., Ren X. Physical metallurgy of Ti-Ni-based shape memory alloys. Prog. Mater. Sci., 2005, 50(5): 511.

[2]

Jani J.M., Leary M., Subic A., Gibson M.A. A review of shape memory alloy research, applications and opportunities. Mater. Des., 2014, 56, 1078.

[3]

Huang Y., Kong J.F., Venkatraman S.S. Biomaterials and design in occlusion devices for cardiac defects: a review. Acta Biomater., 2014, 10(3): 1088.

[4]

Elahinia M.H., Hashemi M., Tabesh M., Bhaduri S.B. Manufacturing and processing of NiTi implants: a review. Prog. Mater. Sci., 2012, 57(5): 911.

[5]

Denkhaus E., Salnikow K. Nickel essentiality, toxicity and carcinogenicity. Crit. Rev. Oncol. Hematol., 2002, 42(1): 35.

[6]

Habijan T., Bremm O., Esenwein S.A., Muhr G., Köller M. Influence of nickel ions on human multipotent mesenchymal stromal cells (hMSCs). Materialwiss. Werkstofftech., 2007, 38(12): 969.

[7]

Shabalovskaya S., Anderegg J., Van Humbeeck J. Critical overview of Nitinol surfaces and their modifications for medical applications. Acta Biomater., 2008, 4(3): 447.

[8]

Zhao T.T., Li Y., Wei S.B., Xiang Y. Research progress on surface modification of biomedical TiNi shape memory alloys. Rare Met. Mater. Eng., 2010, 39(S1): 320.

[9]

Sun Y.R., Zhao T.T., Wang S.N., Li Y. Research progress on surface modification of NiTi shape memory alloy. Chin. J. Rare Met., 2014, 38(2): 312.

[10]

Poon R.W.Y., Ho J.P.Y., Liu X.Y., Chung C.Y., Chu P.K., Yeung K.W.K., Lu W.W., Cheung K.M.C. Anti-corrosion performance of oxidized and oxygen plasma-implanted NiTi alloys. Mater. Sci. Eng. A, 2005, 390(1-2): 444.

[11]

Poon R.W.Y., Yeung K.W., Liu X.Y., Chu P.K., Chung C.Y., Lu W.W., Cheung K.M.C., Chan D. Carbon plasma immersion ion implantation of nickel–titanium shape memory alloys. Biomaterials, 2005, 26(15): 2265.

[12]

Liu X.M., Wu S.L., Chan Y.L., Chu P.K., Chung C.Y., Chu C.L., Yeung K.W.K., Lu W.W., Cheung K.M.C., Luk K.D.K. Structure and wear properties of NiTi modified by nitrogen plasma immersion ion implantation. Mater. Sci. Eng. A, 2007, 444(1-2): 192.

[13]

Kucharski S., Levintant-Zayonts N., Luckner J. Mechanical response of nitrogen ion implanted NiTi shape memory alloy. Mater. Des., 2014, 56, 671.

[14]

Cheng Y., Wei C., Gan K.Y., Zhao L.C. Surface modification of TiNi alloy through tantalum immersion ion implantation. Surf. Coat. Technol., 2004, 176(2): 261.

[15]

Li Y., Wei S.B., Cheng X.Q., Zhang T., Cheng G.A. Corrosion behavior and surface characterization of tantalum implanted TiNi alloy. Surf. Coat. Technol., 2008, 202(13): 3017.

[16]

Li Y., Zhao T.T., Wei S.B., Xiang Y., Chen H. Effect of Ta2O5/TiO2 thin film on mechanical properties, corrosion and cell behavior of the NiTi alloy implanted with tantalum. Mater. Sci. Eng. C, 2010, 30(8): 1227.

[17]

Wang S.N., Li Y., Zhao T.T. Effect of thermal oxidation on the surface characteristics and corrosion behavior of a Ta-implanted Ti-50.6Ni shape memory alloy. Int. J. Miner. Metall. Mater., 2012, 19(12): 1134.

[18]

Zhao T.T., Li Y., Xiang Y., Zhao X.Q., Zhang T. Surface characteristics, nano-indentation and corrosion behavior of Nb implanted NiTi alloy. Surf. Coat. Technol., 2011, 205(19): 4404.

[19]

Zhao T.T., Li Y., Xia Y., Venkatraman S.S., Xiang Y., Zhao X.Q. Formation of a nano-pattering NiTi surface with Ni-depleted superficial layer to promote corrosion resistance and endothelial cell-material interaction. J. Mater. Sci. Mater. Med., 2013, 24(1): 105.

[20]

Zhao T.T., Li Y., Liu Y., Zhao X.Q. Nano-hardness, wear resistance and pseudoelasticity of hafnium implanted NiTi shape memory alloy. J. Mech. Behav. Biomed. Mater., 2012, 13, 174.

[21]

Luo P., Wang S.N., Zhao T.T., Li Y. Surface characteristics, corrosion behavior, and antibacterial property of Ag-implanted NiTi alloy. Rare Met., 2013, 32(2): 113.

[22]

ISO 10993-12. Biological Evaluation of Medical Devices: Part 12. Sample Preparation and Reference Materials, 2007

[23]

Deligianni D.D., Katsala N., Ladas S., Sotiropoulou D., Amedee J., Missirlis Y.F. Effect of surface roughness of the titanium alloy Ti-6Al-4V on human bone marrow cell response and on protein adsorption. Biomaterials, 2001, 22(11): 1241.

[24]

Ponsonnet L., Reybier K., Jaffrezic N., Comte V., Lagneau C., Lissac M., Martelet C. Relationship between surface properties (roughness, wettability) of titanium and titanium alloys and cell behaviour. Mater. Sci. Eng. C, 2003, 23(4): 551.

AI Summary AI Mindmap
PDF

103

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/