Effect of compression direction on the dynamic recrystallization behavior of continuous columnar-grained CuNi10Fe1Mn alloy
Yong-kang Liu , Hai-you Huang , Jian-xin Xie
International Journal of Minerals, Metallurgy, and Materials ›› 2015, Vol. 22 ›› Issue (8) : 851 -859.
Effect of compression direction on the dynamic recrystallization behavior of continuous columnar-grained CuNi10Fe1Mn alloy
The dynamic recrystallization (DRX) behavior of continuous columnar-grained (CCG) CuNi10Fe1Mn alloy was investigated by hot compression along the solidification direction (SD) and perpendicular to the solidification direction (PD). Specimens were compressed to a true strain of 0.8 at temperatures ranging from 25°C to 900°C and strain rates ranging from 0.01 to 10 s−1. The results indicate that DRX nucleation at grain boundaries (GBs) and DRX nucleation at slip bands (SBs) are the two main nucleation modes. For SD specimens, C-shaped bending and zig-zagging of the GBs occurred during hot compression, which made DRX nucleation at the GBs easier than that at the SBs. When lnZ ≤ 37.4 (Z is the Zener–Hollomon parameter), DRX can occur in SD specimens with a critical temperature for the DRX onset of ~650°C and a thermal activated energy (Q) of 313.5 kJ·mol−1. In contrast, in PD specimens, the GBs remained straight, and DRX nucleation occurred preferentially at the SBs. For PD specimens, the critical temperature is about 700°C, Q is 351.7 kJ·mol−1, and the occurrence condition of DRX is lnZ ≤ 40.1. The zig-zagging of GB morphology can significantly reduce the nucleation energy at the GBs; as a result, DRX nucleation occurs more easily in SD specimens than in PD specimens.
copper–nickel alloys / columnar grains / compressive deformation / dynamic recrystallization / grain boundaries
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
/
| 〈 |
|
〉 |