Effect of microstructure on the impact toughness of a bainitic steel bloom for large plastic molds

Zheng Zhang , Xiao-chun Wu , Quan Zhou , Li-li Duan

International Journal of Minerals, Metallurgy, and Materials ›› 2015, Vol. 22 ›› Issue (8) : 842 -850.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2015, Vol. 22 ›› Issue (8) : 842 -850. DOI: 10.1007/s12613-015-1141-8
Article

Effect of microstructure on the impact toughness of a bainitic steel bloom for large plastic molds

Author information +
History +
PDF

Abstract

The correlation between the impact toughness and microstructural characteristics of a large bainitic steel bloom has been investigated. The study focuses on microcrack nucleation and propagation in the basic cleavage plane. To analyze the phase transformation during the wind-cooling process, the temperature field of the bloom was acquired by computer simulation, and a continuous cooling transformation experiment was conducted. The results show that compared with the surface of the bloom, the toughness of the bloom’s core is decreased by the increase in proeutectoid ferrite and the coarsening of tempered martensite–austenite constituents. The proeutectoid ferrite decreases the toughness via its effects on carbide precipitation, the formation of martensite–austenite constituents, and the bainite transformation. The relatively large tempered martensite–austenite constituents are conducive to microcrack nucleation and propagation.

Keywords

mold steel / microstructure / impact toughness / cooling rate / phase transformation / microcracks

Cite this article

Download citation ▾
Zheng Zhang, Xiao-chun Wu, Quan Zhou, Li-li Duan. Effect of microstructure on the impact toughness of a bainitic steel bloom for large plastic molds. International Journal of Minerals, Metallurgy, and Materials, 2015, 22(8): 842-850 DOI:10.1007/s12613-015-1141-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Firrao D., Matteis P., Scavino G., Ubertalli G., Lenco M.G., Pinasco M.R., Stagno E., Gerosa R., Rivolta B., Silvestri A., Silva G., Ghidini A. Relationships between tensile and fracture mechanics properties and fatigue properties of large plastic mold steel blocks. Mater. Sci. Eng. A, 2007, 468-470, 193.

[2]

Hoseiny H., Klement U., Sotskovszki P., Andersson J. Comparison of the microstructures in continuous-cooled and quench-tempered pre-hardened mold steels. Mater. Des., 2011, 32(1): 21.

[3]

Luo Y., Wu X.C., Wang H.B., Min Y.A. A comparative study on non-quenched and quenched prehardened steel for large section plastic mold. J. Mater. Process. Technol., 2009, 209(14): 5437.

[4]

Luo Y., Wu X.C., Min Y.A., Zhu Z., Wang H.B. Development of non-quenched prehardened steel for large section plastic mold. J. Iron Steel Res. Int., 2009, 16(2): 61.

[5]

Hoseiny H., Caballero F.G., Martin D.S., Capdevilla C. The influence of austenitization temperature on the mechanical properties of a prehardened mold steel. Mater. Sci. Forum, 2012, 706–709, 2140.

[6]

Sourmail T., Smanio V. Optimisation of the mechanical properties of air cooled bainitic steel components through tailoring of the transformation kinetics. Mater. Sci. Eng. A, 2013, 582, 257.

[7]

Gomez G., Pérez T., Bhadeshia H.K.D.H. Air cooled bainitic steels for strong, seamless pipes: Part 1. Alloy design, kinetics and microstructure. Mater. Sci. Technol., 2009, 25(12): 1501.

[8]

Matlock D.K., Krauss G., Speer J.G. Microstructures and properties of direct-cooled microalloy forging steels. J. Mater. Procoss. Technol., 2001, 117(3): 324.

[9]

Olasolo M., Uranga P., Rodriguez-Ibabe J.M., López B. Effect of austenite microstructure and cooling rate on transformation characteristics in a low carbon Nb–V microalloyed steel. Mater. Sci. Eng. A, 2011, 528(6): 2559.

[10]

Girault E., Jacques P., Harlet P.h, Mols K., Van Humbeeck J., Aernoudt E., Delannay F. Metallographic methods for revealing the multiphase microstructure of TRIP-assisted steels. Mater. Charact., 1998, 40(2): 111.

[11]

Saha Podder A., Bhadeshia H.K.D.H. Thermal stability of austenite retained in bainitic steels. Mater. Sci. Eng. A, 2010, 527(7-8): 2121.

[12]

Saha Podder A., Lonardelli I., Molinari A., Bhadeshia H.K.D.H. Thermal stability of retained austenite in bainitic steel: an in situ study. Proc. R. Soc. A, 2011, 467(2135): 3141.

[13]

Smith E. Cleavage fracture in mild steel. Int. J. Fract. Mech., 1968, 4(2): 131.

[14]

Hull D. Fractography: Observing, Measuring and Interpreting Fracture Surface Topography, 1999, Cambridge, Cambridge University Press, 91.

[15]

Anderson T.L. Fracture Mechanics: Fundamentals and Applications, 2005, Boca Raton, CRC Press, 236.

[16]

Im Y.R., Lee B.J., Oh Y.J., Hong J.H., Lee H.C. Effect of microstructure on the cleavage fracture strength of low carbon Mn–Ni–Mo bainitic steels. J. Nucl. Mater., 2004, 324(1): 33.

[17]

Salemi A., Abdollah-Zadeh A., Mirzaei M., Assadi H. A study on fracture properties of multiphase microstructures of a CrMo steel. Mater. Sci. Eng. A, 2008, 492(1-2): 45.

[18]

Watanabe T., Tsurekawa S. Toughening of brittle materials by grain boundary engineering. Mater. Sci. Eng. A, 2004, 387-389, 447.

[19]

Lambert-Perlade A., Sturel T., Gourgues A.F., Besson J., Pineau A. Mechanisms and modeling of cleavage fracture in simulated heat-affected zone microstructures of a high-strength low alloy steel. Metall. Mater. Trans. A, 2004, 35(3): 1039.

[20]

Mohseni P., Solberg J.K., Karlsen M., Akselsen O.M., Østby E. Cleavage fracture initiation at M–A constituents in intercritically coarse-grained heat-affected zone of a HSLA steel. Metall. Mater. Trans. A, 2014, 45(1): 384.

[21]

Gudas J.P., Irwin G.R., Armstrong R.W., Zhang X.J. A model for transition fracture of structure steels from observation of isolated cleavage regions. Proceedings of Defect Assessment in Components: Fundamentals and Applications, 1991 549.

[22]

Caballero F.G., Roelofs H., Hasler St., Capdevila C., Chao J., Cornide J., Garcia-Mateo C. Influence of bainite morphology on impact toughness of continuously cooled cementite free bainitic steels. Mater. Sci. Technol., 2012, 28(1): 95.

[23]

Beremin F.M., Pineau A., Mudry F., Devaux J.C., D’Escatha Y., Ledermann P. A local criterion for cleavage fracture of a nuclear pressure vessel steel. Metall. Trans. A, 1983, 14(11): 2277.

[24]

Lei W.S., Dahl W. Weakest-link statistics of cleavage fracture. Int. J. Pressure Vessels Piping, 1997, 74(3): 259.

[25]

Lee C.H., Bhadeshia H.K.D.H., Lee H.C. Effect of plastic deformation on the formation of acicular ferrite. Mater. Sci. Eng. A, 2003, 360(1-2): 249.

[26]

Zhang R.Y., Boyd J.D. Bainite transformation in deformed austenite. Metall. Mater. Trans. A, 2010, 41(6): 1448.

[27]

Matsuzaki A., Bhadeshia H.K.D.H. Effect of austenite grain size and bainite morphology on overall kinetics of bainite transformation in steels. Mater. Sci. Technol., 1999, 15(5): 518.

[28]

Bhadeshia H.K.D.H. Bainite in Steels, 2001, London, Institute of Materials, 349.

AI Summary AI Mindmap
PDF

97

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/