Influence of chromium on the initial corrosion behavior of low alloy steels in the CO2–O2–H2S–SO2 wet–dry corrosion environment of cargo oil tankers

Qing-he Zhao , Wei Liu , Jie Zhao , Dong Zhang , Peng-cheng Liu , Min-xu Lu

International Journal of Minerals, Metallurgy, and Materials ›› 2015, Vol. 22 ›› Issue (8) : 829 -841.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2015, Vol. 22 ›› Issue (8) : 829 -841. DOI: 10.1007/s12613-015-1140-9
Article

Influence of chromium on the initial corrosion behavior of low alloy steels in the CO2–O2–H2S–SO2 wet–dry corrosion environment of cargo oil tankers

Author information +
History +
PDF

Abstract

The influence of Cr on the initial corrosion behavior of low-alloy steels exposed to a CO2–O2–H2S–SO2 wet–dry corrosion environment was investigated using weight-loss measurements, scanning electron microscopy, N2 adsorption tests, X-ray diffraction analysis, and electrochemical impedance spectroscopy. The results show that the corrosion rate increases with increasing Cr content in samples subjected to corrosion for 21 d. However, the rust grain size decreases, its specific surface area increases, and it becomes more compact and denser with increasing Cr content, which indicates the enhanced protectivity of the rust. The results of charge transfer resistance (R ct) calculations indicate that higher Cr contents can accelerate the corrosion during the first 7 d and promote the formation of the enhanced protective inner rust after 14 d; the formed protective inner rust is responsible for the greater corrosion resistance during long-term exposure.

Keywords

low alloy steels / corrosion rate / chromium / rust / oil tankers

Cite this article

Download citation ▾
Qing-he Zhao, Wei Liu, Jie Zhao, Dong Zhang, Peng-cheng Liu, Min-xu Lu. Influence of chromium on the initial corrosion behavior of low alloy steels in the CO2–O2–H2S–SO2 wet–dry corrosion environment of cargo oil tankers. International Journal of Minerals, Metallurgy, and Materials, 2015, 22(8): 829-841 DOI:10.1007/s12613-015-1140-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Shiomi H., Kaneko M., Kashima K., Imamura H., Komori T. Development of anti-corrosion steel for cargo oil tanks. Proceeding of TSCF 2007 Shipbuilders Meeting, 2007 1.

[2]

Kashima K., Tanino Y., Kubo S., Inami A., Miyuki H. Development of corrosion resistant steel for cargo oil tanks. Proceeding of International Symposium on Shipbuilding Technology-Fabrication and Coatings, 2007 5.

[3]

Soares C.G., Garbatov Y., Zayed A., Wang G. Corrosion wastage model for ship crude oil tanks. Corros. Sci., 2008, 50(11): 3095.

[4]

Liang J.M., Tang D., Zhang P.C., Wu H.B., Mao H.Y., Liu X.T. Corrosion behavior of low-alloy steel in COT upper deck O2-CO2-SO2-H2Smoisture environment. Adv. Mater. Res., 2013, 652-654, 916.

[5]

Yamaguchi Y., Terashima S. Development of guidelines on corrosion resistant steels for cargo oil tanks. Proceeding of ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering, American Society of Mechanical Engineers, 2011 333.

[6]

Wang Z.F., Liu J.R., Wu L.X., Han R.D., Sun Y.Q. Study of the corrosion behavior of weathering steels in atmospheric environments. Corros. Sci., 2013, 67, 1.

[7]

Tamura H. The role of rusts in corrosion and corrosion protection of iron and steel. Corros. Sci., 2008, 50(7): 1872.

[8]

Singh D.D.N., Yadav S., Saha J.K. Role of climatic conditions on corrosion characteristics of structural steels. Corros. Sci., 2008, 50(1): 93.

[9]

M. Kimura, T. Suzuki, G. Shigesato, H. Kihira, and K. Tanabe, Fe(O,OH)6 network structure of rust formed on weathering steel surfaces and its relationship with corrosion resistance, Nippon Steel Tech. Rep., 87(2003), p. 17.

[10]

Townsend H.E. Effects of alloying elements on the corrosion of steel in industrial atmospheres. Corrosion, 2001, 57(6): 497.

[11]

Liu W., Fan X.H., Li S.F., Shang C.J., Wang X.M., Lu M.X. Corrosion behavior of low alloy steels in a CO2-O2-H2S-SO2 wet gas environment of crude oil tanks. J. Univ. Sci. Technol. Beijing, 2011, 33(1): 33.

[12]

Yamashita M., Miyuki H., Matsuda Y., Nagano H., Misawa T. The long term growth of the protective rust layer formed on weathering steel by atmospheric corrosion during a quarter of a century. Corros. Sci., 1994, 36(2): 283.

[13]

Yamashita M., Shimizu T., Konishi H., Mizuki J., Uchida H. Structure and protective performance of atmospheric corrosion product of Fe–Cr alloy film analyzed by Mössbauer spectroscopy and with synchrotron radiation X-rays. Corros. Sci., 2003, 45(2): 381.

[14]

Asami K., Kikuchi M. Characterization of rust layers on weathering steels air-exposed for a long period. Mater. Trans., 2002, 43(11): 2818.

[15]

Kamimura T., Stratmann M. The influence of chromium on the atmospheric corrosion of steel. Corros. Sci., 2001, 43(3): 429.

[16]

Sun J.B., Liu W., Chang W., Zhang Z.H., Li Z.T., Yu T., Lu M.X. Characteristics and formation mechanism of corrosion scales on low-chromium X65 steels in CO2 environment. Acta Metall. Sin., 2009, 45(1): 84.

[17]

Li D.P., Zhang L., Yang J.W., Lu M.X., Ding J.H., Liu M.L. Effect of H2Sconcentration on the corrosion behavior of pipeline steel under the coexistence of H2Sand CO2. Int. J. Miner. Metall. Mater., 2014, 21(4): 388.

[18]

Zhong J.Y., Sun M., Liu D.B., Li X.G., Liu T.Q. Effects of chromium on the corrosion and electrochemical behaviors of ultra high strength steels. Int. J. Miner. Metall. Mater., 2010, 17(3): 282.

[19]

Efremenko V.G., Shimizu K., Cheiliakh A.P., Kozarevskaya T.V., Kusumoto K., Yamamoto K. Effect of vanadium and chromium on the microstructural features of V-Cr-Mn-Ni sopheroidal carbide cast irons. Int. J. Miner. Metall. Mater., 2014, 21(11): 1096.

[20]

Huo X.D., Li Y.Q., Zhao Y.T., Zhang H.W., Li Z.H. Effect of cooling parameters on the microstructure and properties of Mo-bearing and Cr-bearing steels. Int. J. Miner. Metall. Mater., 2011, 18(5): 551.

[21]

Guo J., Yang S.W., Shang C.J., Wang Y., He X.L. Influence of carbon content and microstructure on corrosion behaviour of low alloy steels in a Cl- containing environment. Corros. Sci., 2008, 51(2): 242.

[22]

T. Kamimura, S. Hara, H. Miyuki, M. Yamashita, and H. Uchida, Composition, protective ability of rust layer formed on weathering steel exposed to various environments, Corros. Sci., 48(2006), No. 9, p. 2799.

[23]

Pérez F.R., Barrero C.A., Arnache O., Sánchez L.C., García K.E., Walker A.R.H. Structural properties of iron phases formed on low alloy steels immersed in sodium chloride-rich solutions. Phys. B, 2009, 404(8-11): 1347.

[24]

Pérez F.R., Barrero C.A., Hight Walker A.R., García K.E., Nomura K. Effects of chloride concentration, immersion time and steel composition on the spinel phase formation. Mater. Chem. Phys., 2009, 117(1): 214.

[25]

Ke W., Dong J.H. Study on the rusting evolution and the performance of resisting to atmospheric corrosion for Mn-Cu steel. Acta Metall. Sin., 2010, 46(11): 1365.

[26]

Hao L., Zhang S.X., Dong J.H., Ke W. A study of the evolution of rust on Mo-Cu-bearing fire-resistant steel submitted to simulated atmospheric corrosion. Corros. Sci., 2012, 54, 244.

[27]

Aasmi K., Kikuchi M. In-depth distribution of rusts on a plain carbon steel and weathering steels exposed to coastal-indutrial atmosphere for 17 years. Corros. Sci., 2003, 45(11): 2671.

[28]

Ishikawa T., Yoshida T., Kandori K., Nakayama T., Hara S. Assessment of protective function of steel rust layers by N2 adsorption. Corros. Sci., 2007, 49(3): 1468.

[29]

Hao L., Zhang S.X., Dong J.H., Ke W. Evolution of atmospheric corrosion of MnCuP weathering steel in a simulated coastal-industrial atmosphere. Corros. Sci., 2012, 59, 270.

[30]

Hoerlé S., Mazaudier F., Dillmann P., Santarini G. Advances in understanding atmospheric corrosion of iron. II. Mechanistic modelling of wet-dry cycles. Corros. Sci., 2004, 46(6): 1431.

[31]

Qian Y.H., Niu D., Xu J.J., Li M.S. The influence of chromium content on the electrochemical behavior of weathering steels. Corros. Sci., 2013, 71, 72.

[32]

Kamimura T., Nasu S., Segi T., Tazaki T., Morimoto S., Miyuki H. Corrosion behavior of steel under wet and dry cycles containing Cr3+ ion. Corros. Sci., 2003, 45(8): 1863.

[33]

Yamashita M., Konishi H., Mizuki J., Uchida H. Nanostructure of protective rust layer on weathering steel examined using synchrotron radiation X-rays. Mater. Trans., 2004, 45(6): 1920.

[34]

Yamashita M., Konishi H., Kozakura T., Mizuki J., Uchida H. In-situ observation of initial rust formation process on carbon steel under NaSO4 and NaCl solution films with wet/dry cycles using synchrotron radiation X-rays. Corros. Sci., 2005, 47(10): 2492.

[35]

Ishikawa T., Takeuchi K., Kandori K., Nakayama T. Transformation of γ-FeOOH to α-FeOOH in acidic solutions containing metal ions. Colloids Surf. A, 2005, 266(1-3): 155.

[36]

Majzlan J., Grevel K., Navrotsky A. Thermodynamics of Fe oxides: Part II. Enthalpies of formation and relative stability of goethite (α-FeOOH), lepidocrocite (γ-FeOOH), and maghemite (γ-Fe2O3). Am. Mineral., 2003, 88(5-6): 855.

[37]

Antony H., Legrand L., Maréchal L., Perrin S., Dillmann P.h, Chaussé A. Study of lepidocrocite γ-FeOOH electrochemical reduction in neutral and slightly alkaline solutions at 25°C. Electrochim. Acta, 2005, 51(4): 745.

[38]

Dillmann Ph., Mazaudier F., Hoerlé S. Advances in understanding atmospheric corrosion of iron: I. Rust characterisation of ancient ferrous artefacts exposed to indoor atmospheric corrosion. Corros. Sci., 2004, 46(6): 1401.

AI Summary AI Mindmap
PDF

120

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/