Characterization and chemical surface texturization of bulk ZnTe crystals grown by temperature gradient solution growth

Rui Yang , Wan-qi Jie , Hang Liu

International Journal of Minerals, Metallurgy, and Materials ›› 2015, Vol. 22 ›› Issue (7) : 755 -761.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2015, Vol. 22 ›› Issue (7) : 755 -761. DOI: 10.1007/s12613-015-1131-x
Article

Characterization and chemical surface texturization of bulk ZnTe crystals grown by temperature gradient solution growth

Author information +
History +
PDF

Abstract

Using tellurium as a solvent, we grew ZnTe ingots of 30 mm in diameter and 70 mm in length by a temperature gradient solution growth method. Hall tests conducted at 300 K indicated that the as-grown ZnTe exhibits p-type conductivity, with a carrier concentration of approximately 1014 cm−3, a mobility of approximately 300 cm2·V−1·s−1, and a resistivity of approximately 102 Ω·cm. A simple and effective method was proposed for chemical surface texturization of ZnTe using an HF:H2O2:H2O etchant. Textures with the sizes of approximately 1 µm were produced on {100}, {110}, and {111}Zn surfaces after etching. The etchant is also very promising in crystal characterization because of its strong anisotropic character and Te-phase selectivity.

Keywords

semiconductor materials / crystal growth / electrical properties / surfaces / etching / microstructure

Cite this article

Download citation ▾
Rui Yang, Wan-qi Jie, Hang Liu. Characterization and chemical surface texturization of bulk ZnTe crystals grown by temperature gradient solution growth. International Journal of Minerals, Metallurgy, and Materials, 2015, 22(7): 755-761 DOI:10.1007/s12613-015-1131-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ollmann Z, Fülöp JA, Hebling J, Almási G. Design of a high-energy terahertz pulse source based on ZnTe contact grating. Opt. Commun., 2014, 315, 159.

[2]

Skhouni O, El Manouni A, Mollar M, Schrebler R, Marí B. ZnTe thin films grown by electrodeposition technique on fluorine tin oxide substrates. Thin Solid Films, 2014, 564, 195.

[3]

Uen WY, Chou SY, Shin HY, Liao SM, Lan SM. Characterizations of ZnTe bulks grown by temperature gradient solution growth. Mater. Sci. Eng. B, 2004, 106(1): 27.

[4]

Shimada T, Kamaraju N, Frischkorn C, Wolf M, Kampfrath T. Indication of Te segregation in laser-irradiated ZnTe observed by in situ coherent-phonon spectroscopy. Appl. Phys. Lett., 2014, 105(11): 111908.

[5]

Lévy-Clément C. Applications of porous silicon to multicrystalline silicon solar cell: state of the art. ECS Trans., 2013, 50(37): 167.

[6]

Hochbaum AI, Gargas D, Hwang YJ, Yang PD. Single crystalline mesoporous silicon nanowires. Nano Lett., 2009, 9(10): 3550.

[7]

Monaico E, Colibaba G, Nedeoglo D, Nielsch K. Porosification of III–V and II–VI semiconductor compounds. J. Nanoelectron. Optoelectron., 2014, 9(2): 307.

[8]

Piester D, Bönsch P, Schrimpf T, Wehmann HH, Schlachetzki A. Laser-action in V-groove-shaped InGaAs-InP single quantum wires. IEEE J. Sel. Top. Quantum Electron., 2000, 6(3): 522.

[9]

Comerford L, Zory P. Selectively etched diffraction gratings in GaAs. Appl. Phys. Lett., 2003, 25(4): 208.

[10]

Tsang WT, Wang S. Profile and groove-depth control in GaAs diffraction gratings fabricated by preferential chemical etching in H2SO4-H2O2-H2O system. Appl. Phys. Lett., 2008, 28(1): 44.

[11]

Steele JA, Lewis RA, Sirbu L, Enachi M, Tiginyanu IM, Skuratov VA. Optical reflectance studies of highly specular anisotropic nanoporous (111) InP membrane. Semicond. Sci. Technol., 2015, 30(4): 044003.

[12]

Radhanpura K, Hargreaves S, Lewis RA, Sirbu L, Tiginyanu IM. Heavy noble gas (Kr, Xe) irradiated (111) InP nanoporous honeycomb membranes with enhanced ultrafast all-optical terahertz emission. Appl. Phys. Lett., 2010, 97, 181921.

[13]

Carson JA. Solar Cell Research Progress, 2008, New York, Nova Publishers

[14]

Bañuelos JG, Basiuk EV, Saniger-Blesa JM. Morphology of patterned semiconductor III–V surfaces prepared by spontaneous anisotropic chemical etching. Rev. Mex. Fis., 2003, 49, 310.

[15]

Basiuk EV. Spontaneous anisotropic etching of the InP(100) surface in concentrated hydrochloric and sulfuric acids. Surf. Coat. Technol., 1994, 67(1-2): 51.

[16]

Su CH. A method of promoting single crystal yield during melt growth of semiconductors by directional solidification. J. Cryst. Growth, 2015, 410, 35.

[17]

Trivedi SB, Wang CC, Kutcher S, Hommerich U, Palosz W. Crystal growth technology of binary and ternary II–VI semiconductors for photonic applications. J. Cryst. Growth, 2008, 310(6): 1099.

[18]

Babalola OS. Surface and Bulk Defects in Cadmium Zinc Telluride and Cadmium Manganese Telluride Crystals [Dissertation], 2009, Nashville, Vanderbilt University, 75.

[19]

Wang R, Ge J, Li D, Hu SH, Fang WZ, Dai N, Ma GH. Radiation and detection of terahertz pulse in >331<oriented ZnTe single crsytal. Acta Photon. Sin., 2009, 38(9): 2330.

[20]

Uchida M, Matsuda Y, Asahi T, Sato K, Oda O. Stoichiometry control of ZnTe single crystals by the vapor pressure-controlled wafer-annealing method. J. Cryst. Growth, 2000, 216(1-4): 134.

[21]

Jordan AS, Derick L. Vapor growth of high resistivity ZnTe. J. Electrochem. Soc., 1969, 116(10): 1424.

[22]

Yang R, Jie WQ, Liu H, Xu YD. Narrow shape distribution of Te inclusions in ZnTe single crystals grown from Te solution. J. Cryst. Growth, 2014, 404, 14.

[23]

Wang R, Fang WZ, Zhao P, Zhang CH, Zhang L, Ge J, Yuan SX, Zhang HE, Hu SH, Shen XM, Dai N. Growth and characterization of >110<oriented ZnTe single crystal. Proc. SPIE, 2007, 6835, 683519.

[24]

Yang R, Jie WQ. Selective etching of ZnTe in HF:H2O2:H2O solution: Interpretation of extended defect-related etch figures. Cryst. Res. Technol., 2015, 50(3): 215.

AI Summary AI Mindmap
PDF

100

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/