Electrochemical investigation on the hydrogen permeation behavior of 7075-T6 Al alloy and its influence on stress corrosion cracking

Chuan-bo Zheng , Bing-hao Yan , Ke Zhang , Guo Yi

International Journal of Minerals, Metallurgy, and Materials ›› 2015, Vol. 22 ›› Issue (7) : 729 -737.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2015, Vol. 22 ›› Issue (7) : 729 -737. DOI: 10.1007/s12613-015-1128-5
Article

Electrochemical investigation on the hydrogen permeation behavior of 7075-T6 Al alloy and its influence on stress corrosion cracking

Author information +
History +
PDF

Abstract

The hydrogen permeation behavior and stress corrosion cracking (SCC) susceptibility of precharged 7075-T6 Al alloy were investigated in this paper. Devanthan–Stachurski (D-S) cell tests were used to measure the apparent hydrogen diffusivity and hydrogen permeation current density of specimens immersed in 3.5wt% NaCl solution. Electrochemical experiment results show that the SCC susceptibility is low during anodic polarization. Both corrosion pits and hydrogen-induced cracking are evident in scanning electron microscope images after the specimens have been charging for 24 h.

Keywords

aluminum alloys / hydrogen permeation / hydrogen embrittlement / stress corrosion cracking

Cite this article

Download citation ▾
Chuan-bo Zheng, Bing-hao Yan, Ke Zhang, Guo Yi. Electrochemical investigation on the hydrogen permeation behavior of 7075-T6 Al alloy and its influence on stress corrosion cracking. International Journal of Minerals, Metallurgy, and Materials, 2015, 22(7): 729-737 DOI:10.1007/s12613-015-1128-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yan YJ, Gao KW, Chen CF. Hydrogen-induced cracking behaviors of Incoloy alloy 825. Int. J. Miner. Metall. Mater., 2010, 17(1): 58.

[2]

Zheng C, Yi G. Temperature effect on hydrogen permeation of X56 steel. Mater. Performance, 2011, 50(4): 72.

[3]

Jones RH, Baer DR, Danielson MJ, Vetrano JS. Role of Mg in the stress corrosion cracking of an Al-Mg alloy. Metall. Mater. Trans. A, 2001, 32(7): 1699.

[4]

Najjar D, Magnin T, Warner TJ. Influence of critical surface defects and localized competition between dissolution and hydrogen effects during stress corrosion cracking of a 7050 aluminum alloy. Mater. Sci. Eng. A., 1997, 238(2): 293.

[5]

Takano N. Hydrogen diffusion and embrittlement in 7075 aluminum alloy. Mater. Sci. Eng. A, 2008, 483-484, 336.

[6]

Yue TM, Lan LJ, Dong CF, Chan CP. Stress corrosion cracking behaviour of laser treated aluminum alloy 7075 using a slow strain rate test. Mater. Sci. Technol., 2005, 21(8): 961.

[7]

Winzer N, Atrens A, Dietzel W, Raja VS, Song G, Kainer KU. Characterisation of stress corrosion cracking (SCC) of Mg-Al alloys. Mater. Sci. Eng. A., 2008, 488(1-2): 339.

[8]

Lee EU, Vasudevan AK, Glinka G. Environmental effects on low cycle fatigue of 2024-T351 and 7075-T651 aluminum alloys. Int. J. Fatigue, 2009, 31(11-12): 1938.

[9]

Thakur A, Raman R, Malhotra SN. Hydrogen embrittlement studies of aged and retrogressed-reaged Al–Zn–Mg alloys. Mater. Chem. Phys., 2007, 101(2-3): 441.

[10]

Dong CF, Xiao K, Liu ZY, Yang WJ, Li XG. Hydrogen induced cracking of X80 pipeline steel. Int. J. Miner. Metall. Mater., 2010, 17(5): 579.

[11]

Kotsikos G, Sutcliffe JM, Holroyd NJH. Hydrogen effects in the corrosion fatigue behaviour of the white zone of 7xxx series aluminum alloy welds. Corros. Sci., 2000, 42(1): 17.

[12]

Kermanidis AlTh, Petroyiannis PV, Pantelakis SpG. Fatigue and damage tolerance behaviour of corroded 2024 T351 aircraft aluminum alloy. Theor. Appl. Fract. Mech., 2005, 43(1): 121.

[13]

Zhang Y, Song RG, Tang PH. Hydrogen embrittlement susceptibility and Mg-H interaction in 7075 aluminum alloy. J. Chin. Soc. Corros. Prot., 2010, 30(5): 364.

[14]

Reda Y, Abdel-Karim R, Elmahallawi I. Improvements in mechanical and stress corrosion cracking properties in Al-alloy 7075 via retrogression and reaging. Mater. Sci. Eng. A., 2008, 485(1-2): 468.

[15]

Kamoutsi H, Haidemenopoulos GN, Bontozoglou V, Pantelakis S. Corrosion-induced hydrogen embrittlement in aluminum alloy 2024. Corros. Sci., 2006, 48(5): 1209.

[16]

Thad AM, Paul K, Andrew D. Evaluation of oxidation and hydrogen permeation in Al-containing stainless steel alloys. Mater. Sci. Eng. A, 2006, 424(1-2): 33.

[17]

Danielson MJ. Use of the Devanathan–Stachurski cell to measure hydrogen permeation in aluminum alloys. Corros. Sci., 2002, 44(4): 829.

[18]

Onuchukwu AI, Trasatti S. Hydrogen permeation into aluminum alloy 1060 as a results of corrosion in alkaline medium. Basic features of the process. Electrochim. Acta, 1988, 33(10): 1425.

[19]

Nishimura C, Ozaki T, Komaki M, Zhang Y. Hydrogen permeation and transmission electron microscope observations of V-Al alloys. J. Alloys Compd., 2003, 356-357, 295.

[20]

Ouyang YJ, Yu G, Ou AL, Hu L, Xu WJ. Double electrolyte sensor for monitoring hydrogen permeation rate in steels. Corros. Sci., 2011, 53(6): 2247.

[21]

Zheng CB, Yi G, Gao YM, Zhang K. Hydrogen permeation and stress corrosion cracking sensitivity of 7075-T6 Al alloy in marine environment. Chin. J. Nonferrous Met., 2013, 23(8): 2118.

[22]

Fischer FD, Mori G, Svoboda J. Modelling the influence of trapping on hydrogen permeation in metals. Corros. Sci., 2013, 76, 382.

[23]

Gest RJ, Troiano AR. Stress corrosion and hydrogen embrittlement in an aluminum alloy. Corrosion, 1974, 30(8): 274.

[24]

Kupka M, Stepien K, Losiewicz B. Effect of plastic working on hydrogen permeability in an FeAl-based alloy. J. Alloys Compd., 2009, 482(1-2): 371.

[25]

Zheng CB, Huang YL, Yu Q, Huo CY, Huang YL. Effect of H2S on stress corrosion cracking and hydrogen permeation behaviour of X56 grade steel in atmospheric environment. Corros. Eng. Sci. Technol., 2009, 44(2): 96.

[26]

Chen SJ, Yuan QM, He JP, Liu XL. Potential fluctuations of 7075 aluminum alloy under thin electrolyte layers. J. Electrochem., 2005, 11(2): 167.

[27]

Sulka GD, Józwik P. Electrochemical behavior of Ni3Al-based intermetallic alloys in NaOH. Intermetallics., 2011, 19(7): 974.

[28]

Liu Y, Huang YL, Hou BR. Study on stress corrosion behavior of 16M steel with ZnAl hot-dipped coating in seawater. China Surf. Eng., 2005, 18(3): 45.

[29]

Chu WY, Gao KW, Qiao LJ, Zhang Y. An investigation of corrosion-induced stress during SCC. J. Univ. Sci. Technol. Beijing., 2003, 10(1): 1.

[30]

Lunarska E, Chernyayeva O. Effect of the self-induced strain on the hydrogen permeation through Al. Int. J. Hydrogen Energy, 2006, 31(2): 237.

[31]

Zhang GK, Wang XL, Xiong YF, Shi Y, Song JF, Luo DL. Mechanism for adsorption, dissociation and diffusion of hydrogen in hydrogen permeation barrier of a-Al2O3: a density function theory study. Int. J. Hydrogen Energy, 2013, 38(2): 1157.

[32]

Zhou HR, Li XG, Dong CF, Xiao K, Li T. Corrosion behavior of aluminum alloys in Na2SO4 solution using the scanning electrochemical microscopy technique. Int. J. Miner. Metall. Mater., 2009, 16(1): 84.

[33]

El-Amoush AS. Erratum to “An investigation of mechanical degradation of AlMg1SiCu aluminum alloy by hydrogen”. J. Alloys Compd., 2007, 440(1-2): 380.

[34]

Song RG, Dietzel W, Zhang BJ, Liu WJ, Tseng MK, Atrens A. Stress corrosion cracking and hydrogen embrittlement of an Al-Zn-Mg-Cu alloy. Acta Mater., 2004, 52(16): 4727.

[35]

Anderatta F, Terryn H, de Wit JHW. Corrosion behaviour of different tempers of AA7075 aluminium alloy. Electrochim. Acta, 2004, 49(17-18): 2851.

[36]

Ren XP, Zhang FF, Guo QM, Hou HL, Wang YQ. Hydrogen absorption behavior of TA15 alloy. Int. J. Miner. Metall. Mater., 2011, 18(2): 210.

[37]

Sheng H, Dong CF, Xiao K, Li XG, Lu L. Anodic dissolution of a crack tip at AA 2024-T351 in 5wt% NaCl solution. Int. J. Miner. Metall. Mater., 2012, 19(10): 939.

AI Summary AI Mindmap
PDF

125

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/