Effect of an upward magnetic field on nanosized sulfide precipitation in ultra-low carbon steel

Kang-jia Duan , Ling Zhang , Xi-zhi Yuan , Shan-shan Han , Yu Liu , Qing-song Huang

International Journal of Minerals, Metallurgy, and Materials ›› 2015, Vol. 22 ›› Issue (7) : 714 -720.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2015, Vol. 22 ›› Issue (7) : 714 -720. DOI: 10.1007/s12613-015-1126-7
Article

Effect of an upward magnetic field on nanosized sulfide precipitation in ultra-low carbon steel

Author information +
History +
PDF

Abstract

An induction levitation melting (ILM) refining process is performed to remove most microsized inclusions in ultra-low carbon steel (UCS). Nanosized, spheroid shaped sulfide precipitates remain dispersed in the UCS. During the ILM process, the UCS is molten and is rotated under an upward magnetic field. With the addition of Ti additives, the spinning molten steel under the upward magnetic field ejects particles because of resultant centrifugal, floating, and magnetic forces. Magnetic force plays a key role in removing sub-micrometer-sized particles, composed of porous aluminum titanate enwrapping alumina nuclei. Consequently, sulfide precipitates with sizes less than 50 nm remain dispersed in the steel matrix. These findings open a path to the fabrication of clean steel or steel bearing only a nanosized strengthening phase.

Keywords

ultra-low carbon steel / magnetic field / sulfide precipitation / induction levitation / titanium

Cite this article

Download citation ▾
Kang-jia Duan, Ling Zhang, Xi-zhi Yuan, Shan-shan Han, Yu Liu, Qing-song Huang. Effect of an upward magnetic field on nanosized sulfide precipitation in ultra-low carbon steel. International Journal of Minerals, Metallurgy, and Materials, 2015, 22(7): 714-720 DOI:10.1007/s12613-015-1126-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Taneike M, Abe F, Sawada K. Creep-strengthening of steel at high temperatures using nano-sized carbonitride dispersions. Nature, 2003, 424(6946): 294.

[2]

Mendoza R, Huante J, Alanis M, Gonzalez-Rivera C, Juarez-Islas JA. Processing of ultra low carbon steels with mechanical properties adequate for automotive applications in the as-annealed condition. Mater. Sci. Eng. A, 2000, 276(1-2): 203.

[3]

Mao XP, Huo XD, Sun XJ, Chai YZ. Strengthening mechanisms of a new 700 MPa hot rolled Ti-microalloyed steel produced by compact strip production. J. Mater. Process. Technol., 2010, 210(12): 1660.

[4]

Shi J, Wang X. Comparison of precipitate behaviors in ultra-low carbon, titanium-stabilized interstitial free steel sheets under different annealing processes. J. Mater. Eng. Perform., 1999, 8(6): 641.

[5]

Mizui N, Takayama T, Sekine K. Effect of Mn on solubility of Ti-sulfide and Ti-carbosulfide in ultra-low C steels. ISIJ Int., 2008, 48(6): 845.

[6]

Hua M, Garcia CI, Eloot K, Deardo AJ. Identification of Ti–S–C-containing multi-phase precipitates ultra-low carbon steels by analytical electron microscopy. ISIJ Int., 1997, 37(11): 1129.

[7]

Takechi H. Metallurgical aspects on interstitial free sheet steel from industrial view point. ISIJ Int., 1994, 34(1): 1.

[8]

Hua M, Garcia CI, DeArdo AJ. Precipitation behavior in ultra-low-carbon steels containing titanium and niobium. Metall. Mater. Trans. A, 1997, 28(9): 1769.

[9]

Carabajar S, Merlin J, Massardier V, Chabanet S. Precipitation evolution during the annealing of an interstitial-free steel. Mater. Sci. Eng. A, 2000, 281(1-2): 132.

[10]

Yang XH, Vanderschueren D, Dilewijns J, Standaert C, Houbaert Y. Solubility products of titanium sulphide and carbosulphide in ultra-low carbon steels. ISIJ Int., 1996, 36(10): 1286.

[11]

Iorio LE, Garrison WM. Solubility of titanium carbosulfide in austenite. ISIJ Int., 2002, 42(5): 545.

[12]

Skarvelis P, Rokanopoulou A, Papadimitriou GD. Formation of TiS and Ti4C2S2 in steel matrix composites prepared by the plasma transferred arc (PTA) technique using TiS2 and TiC powders. Tribol. Int., 2013, 66, 44.

[13]

Wu KM, Li ZG, Guo AM, He XL, Zhang LQ, Fang AH, Cheng L. Microstructure evolution in a low carbon Nb-Ti microalloyed steel. ISIJ Int., 2006, 46(1): 161.

[14]

Abe F. Bainitic and martensitic creep-resistant steels. Curr. Opin. Solid State Mater. Sci., 2004, 8(3-4): 305.

[15]

Abe F, Taneike M, Sawada K. Alloy design of creep resistant 9Cr steel using a dispersion of nano-sized carbonitrides. Int. J. Pressure Vessels Piping, 2007, 84(1-2): 3.

[16]

Park KT, Han SY, Shin DH, Lee YK, Lee KJ, Lee KS. Effect of heat treatment on microstructures and tensile properties of ultrafine grained C–Mn steel containing 0.34 mass% V. ISIJ Int., 2004, 44(6): 1057.

[17]

Shin DH, Park KT, Kim YS. Formation of fine cementite precipitates in an ultra-fine grained low carbon steel. Scripta Mater., 2003, 48(5): 469.

[18]

Yin FS, Jung WS, Chung SH. Microstructure and creep rupture characteristics of an ultra-low carbon ferritic/ martensitic heat-resistant steel. Scripta Mater., 2007, 57(6): 469.

[19]

Shim JH, Oh YJ, Suh JY, Cho YW, Shim JD, Byun JS, Lee DN. Ferrite nucleation potency of non-metallic inclusions in medium carbon steels. Acta Mater., 2001, 49(12): 2115.

[20]

Kiviö M, Holappa L. Addition of titanium oxide inclusions into liquid steel to control nonmetallic inclusions. Metall. Materi. Trans. B, 2012, 43(2): 233.

[21]

Byun JS, Shim JH, Cho YW, Lee DN. Non-metallic inclusion and intragranular nucleation of ferrite in Ti-killed C-Mn steel. Acta Mater., 2003, 51(6): 1593.

[22]

Kim WY, Jo JO, Lee CO, Kim DS, Pak JJ. Thermodynamic relation between aluminum and titanium in liquid iron. ISIJ Int., 2008, 48(1): 17.

[23]

Hossein Nedjad S, Farzaneh A. Formation of fine intragranular ferrite in cast plain carbon steel inoculated by titanium oxide nanopowder. Scripta Mater., 2007, 57(10): 937.

[24]

Kang YJ, Jang JH, Park JH, Lee CH. Influence of Ti on non-metallic inclusion formation and acicular ferrite nucleation in high-strength low-alloy steel weld metals. Met. Mater. Int., 2014, 20(1): 119.

[25]

Fattahi M, Nabhani N, Hosseini M, Arabian N, Rahimi E. Effect of Ti-containing inclusions on the nucleation of acicular ferrite and mechanical properties of multipass weld metals. Micron, 2013, 45, 107.

[26]

Fattahi M, Nabhani N, Vaezi MR, Rahimi E. Improvement of impact toughness of AWS E6010 weld metal by adding TiO2 nanoparticles to the electrode coating. Mater. Sci. Eng. A, 2011, 528(27): 8031.

[27]

Matsuura H, Wang C, Wen GH, Sridhar S. The transient stages of inclusion evolution during Al and/or Ti additions to molten iron. ISIJ Int., 2007, 47(9): 1265.

[28]

Mitsui H, Sasaki T, Oikawa K, Ishida K. Phase equilibria in FeS-XS and MnS-XS (X=Ti, Nb and V) systems. ISIJ Int., 2009, 49(7): 936.

[29]

Aminorroaya S, Dippenaar R. TEM analysis of centreline sulphide precipitates modified by titanium additions to low carbon steel. J. Microsc., 2008, 232(1): 123.

AI Summary AI Mindmap
PDF

114

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/