High plastic Zr–Cu–Fe–Al–Nb bulk metallic glasses for biomedical applications

Shu-shen Wang , Yun-liang Wang , Yi-dong Wu , Tan Wang , Xi-dong Hui

International Journal of Minerals, Metallurgy, and Materials ›› 2015, Vol. 22 ›› Issue (6) : 648 -653.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2015, Vol. 22 ›› Issue (6) : 648 -653. DOI: 10.1007/s12613-015-1118-7
Article

High plastic Zr–Cu–Fe–Al–Nb bulk metallic glasses for biomedical applications

Author information +
History +
PDF

Abstract

Four Zr–Cu–Fe–Al-based bulk metallic glasses (BMGs) with Zr contents greater than 65at% and minor additions of Nb were designed and prepared. The glass forming abilities, thermal stabilities, mechanical properties, and corrosion resistance properties of the prepared BMGs were investigated. These BMGs exhibit moderate glass forming abilities along with superior fracture and yield strengths compared to previously reported Zr–Cu–Fe–Al BMGs. Specifically, the addition of Nb into this quaternary system remarkably increases the plastic strain to 27.5%, which is related to the high Poisson’s ratio and low Young’s and shear moduli. The Nb-bearing BMGs also exhibit a lower corrosion current density by about one order of magnitude and a wider passive region than 316L steel in phosphate buffer solution (PBS, pH 7.4). The combination of the optimized composition with high deformation ability, low Young’s modulus, and excellent corrosion resistance properties indicates that this kind of BMG is promising for biomedical applications.

Keywords

metallic glasses / biomedical materials / mechanical properties / corrosion resistance / zirconium content / niobium addition

Cite this article

Download citation ▾
Shu-shen Wang, Yun-liang Wang, Yi-dong Wu, Tan Wang, Xi-dong Hui. High plastic Zr–Cu–Fe–Al–Nb bulk metallic glasses for biomedical applications. International Journal of Minerals, Metallurgy, and Materials, 2015, 22(6): 648-653 DOI:10.1007/s12613-015-1118-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Inoue A. Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater., 2000, 48(1): 279.

[2]

Yokoyama Y., Fukaura K., Inoue A. Cast structure and mechanical properties of Zr–Cu–Ni–Al bulk glassy alloys. Intermetallics, 2002, 10(11–4): 1113.

[3]

Zhang Q.S., Zhang W., Wang X.M., Yokoyama Y., Yubuta K., Inoue A. Structure, thermal stability and mechanical properties of Zr65Al7.5Ni10Cu17.5 glassy alloy rod with a diameter of 16 mm produced by tilt casting. Mater. Trans., 2008, 49(9): 2141.

[4]

Inoue A., Shibata T., Zhang T. Effect of additional elements on glass transition behavior and glass formation tendency of Zr–Al–Cu–Ni alloys. Mater. Trans. JIM, 1995, 36(12): 1420.

[5]

Zhang G.Q., Jiang Q.K., Chen L.Y., Shao M., Liu J.F., Jiang J.Z. Synthesis of centimeter-size Ag-doped Zr–Cu–Al metallic glasses with large plasticity. J. Alloys Compd., 2006, 424(1–4): 176.

[6]

Inoue A., Zhang T., Chen M.W., Sakurai T. Mechanical properties of bulk amorphous Zr–Al–Cu–Ni–Ag alloys containing nanoscale quasicrystalline particles. Mater. Trans. JIM, 1999, 40(12): 1382.

[7]

Lee J.K., Choi G., Kim D.H., Kim W.T. Formation of icosahedral phase from amorphous Zr65Al7.5Cu12.5Ni10Ag5 alloys. Appl. Phys. Lett., 2000, 77(7): 978.

[8]

Johnson W.L. Bulk glass-forming metallic alloys: science and technology. MRS Bull., 1999, 24(10): 42.

[9]

Waniuk T.A., Schroers J., Johnson W.L. Critical cooling rate and thermal stability of Zr–Ti–Cu–Ni–Be alloys. Appl. Phys. Lett., 2001, 78(9): 1213.

[10]

Zhang B.Y., Chen X.H., Hui X. D. A coating thickness controlling model in continuously fabricating metallic glass-coated composite wires. Int. J. Miner. Metall. Mater., 2013, 20(5): 456.

[11]

Jin K.F., Löffler J.F. Bulk metallic glass formation in Zr–Cu–Fe–Al alloys. Appl. Phys. Lett., 2005, 86(24): 241909.

[12]

Zhang Q.S., Zhang W., Inoue A. Ni-free Zr–Fe–Al–Cu bulk metallic glasses with high glass-forming ability. Scripta Mater., 2009, 61(3): 241.

[13]

Zhang Q.S., Zhang W., Louuzguine D.V., Inoue A. High glass-forming ability and unusual deformation behavior of new Zr–Cu–Fe–Al bulk metallic glasses. Mater. Sci. Forum, 2010, 654-656, 1042.

[14]

Mondal K., Ohkubo T., Mukai T., Hono K. Glass forming ability and mechanical properties of quinary Zr-based bulk metallic glasses. Mater. Trans., 2007, 48(6): 1322.

[15]

Kaye G.W.C., Laby T.H. Tables of Physical and Chemical Constants. Longman, London, 1921

[16]

Chen X.H., Zhang B.Y., Hui X.D. Effect of Nb on the corrosion behavior of continuous bulk metallic glass-coated steel wire composites. Int. J. Miner. Metall. Mater., 2013, 20(6): 589.

[17]

Inoue A., Takeuchi A. Recent development and application products of bulk glassy alloys. Acta Mater., 2011, 59(6): 2243.

[18]

Kissinger H.E. Reaction kinetics in differential thermal analysis. Anal. Chem., 1957, 29(11): 1702.

[19]

Liu L., Qiu C.L., Chen Q., Chan K.C., Zhang S.M. Deformation behavior, corrosion resistance, and cytotoxicity of Ni-free Zr-based bulk metallic glasses. J. Biomed. Mater. Res. A, 2007 160.

[20]

Zhang Q.S., Zhang W., Xie G.Q., Louzguine-Luzgin D.V., Inoue A. Stable flowing of localized shear bands in soft bulk metallic glasses. Acta Mater., 2010, 58(3): 904.

[21]

Yokoyama Y., Fujita K., Yavari A.R., Inoue A. Malleable hypoeutectic Zr–Ni–Cu–Al bulk glassy alloys with tensile plastic elongation at room temperature. Philos. Mag. Lett., 2009, 89(5): 322.

[22]

Hua N.B., Pang S.J., Li Y., Wang J.F., Li R., Georgarakis K., Yavari A.R., Vaughan G., Zhang T. Ni- and Cu-free Zr–Al–Co–Ag bulk metallic glasses with superior glass-forming ability. J. Mater. Res., 2011, 26(4): 539.

AI Summary AI Mindmap
PDF

139

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/