Effects of ECAE processing temperature on the microstructure, mechanical properties, and corrosion behavior of pure Mg

Zhi Li , Shi-jie Zhou , Nan Huang

International Journal of Minerals, Metallurgy, and Materials ›› 2015, Vol. 22 ›› Issue (6) : 639 -647.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2015, Vol. 22 ›› Issue (6) : 639 -647. DOI: 10.1007/s12613-015-1117-8
Article

Effects of ECAE processing temperature on the microstructure, mechanical properties, and corrosion behavior of pure Mg

Author information +
History +
PDF

Abstract

A two-step equal channel angular extrusion (ECAE) procedure was used to process pure Mg. The effects of ECAE processing temperature on the microstructure, mechanical properties, and corrosion behavior of pure Mg were studied. The results show that the average grain size of pure Mg decreases with decreasing extrusion temperature. After ECAE processing at 473 K, fine and equiaxed grains (~9 μm) are obtained. The sample processed at 473 K exhibits the excellent mechanical properties, whereas the sample processed at 633 K has the lowest corrosion rate. The improved corrosion resistance and mechanical properties of pure Mg by ECAE are ascribed to grain refinement and microstructural modification.

Keywords

magnesium / equal channel angular pressing / microstructure / corrosion resistance / mechanical properties

Cite this article

Download citation ▾
Zhi Li, Shi-jie Zhou, Nan Huang. Effects of ECAE processing temperature on the microstructure, mechanical properties, and corrosion behavior of pure Mg. International Journal of Minerals, Metallurgy, and Materials, 2015, 22(6): 639-647 DOI:10.1007/s12613-015-1117-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Rezwan K., Chen Q.Z., Blaker J.J., Boccaccini A.R. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials, 2006, 27(18): 3413.

[2]

Chen Y.J., Xu Z.G., Smith C., Sankar J. Recent advances on the development of magnesium alloys for biodegradable implants. Acta Biomater, 2014, 10(11): 4561.

[3]

Niinomi M., Nakai M., Hieda J. Development of new metallic alloys for biomedical applications. Acta Biomater., 2012, 8(11): 3888.

[4]

Xin Y., Hu T., Chu P.K. In vitro studies of biomedical magnesium alloys in a simulated physiological environment: a review. Acta Biomater., 2011, 7(4): 1452.

[5]

Wong H.M., Zhao Y., Tam V., Wu S., Chu P.K., Zheng Y., To M.K., Leung F.K., Luk K.D., Cheung K.M., Yeung K.W. In vivo stimulation of bone formation by aluminum and oxygen plasma surface-modified magnesium implants. Biomaterials, 2013, 34(38): 9863.

[6]

Witte F., Hort N., Vogt C., Cohen S., Kainer K.U., Willumeit R., Feyerabend F. Degradable biomaterials based on magnesium corrosion. Curr. Opin. Solid State Mater. Sci., 2008, 12(5–4): 63.

[7]

Chen B., Lu C., Lin D.L., Zeng X.Q. Microstructural evolution and mechanical properties of Mg95.5Y3Zn1.5 alloy processed by extrusion and ECAP. Met. Mater. Int., 2014, 20(2): 285.

[8]

Gzyl M., Rosochowski A., Pesci R., Olejnik L., Yakushina E., Wood P. Mechanical properties and microstructure of AZ31B magnesium alloy processed by I-ECAP. Metall. Mater. Trans. A, 2014, 45(3): 1609.

[9]

Jahadi R., Sedighi M., Jahed H. ECAP effect on the micro- structure and mechanical properties of AM30 magnesium alloy. Mater. Sci. Eng. A, 2014, 593, 178.

[10]

Li Z., Huang N., Zhao J., Zhou S.J. Microstructure, mechanical and degradation properties of equal channel angular pressed pure magnesium for biomedical application. Mater. Sci. Technol., 2013, 29(2): 140.

[11]

Dumitru F.D., Higuera-Cobos O.F., Cabrera J.M. ZK60 alloy processed by ECAP: microstructural, physical and mechanical characterization. Mater. Sci. Eng. A, 2014, 594, 32.

[12]

Li J., Xu W., Wu X., Ding H., Xia K. Effects of grain size on compressive behaviour in ultrafine grained pure Mg processed by equal channel angular pressing at room temperature. Mater. Sci. Eng. A, 2011, 528(18): 5993.

[13]

Biswas S., Dhinwal S.S., Suwas S. Room-temperature equal channel angular extrusion of pure magnesium. Acta Mater., 2010, 58(9): 3247.

[14]

Gan W.M., Zheng M.Y., Chang H., Wang X.J., Qiao X.G., Wu K., Schwebke B., Brokmeier H.G. Microstructure and tensile property of the ECAPed pure magnesium. J. Alloys Compd., 2009, 470(1–4): 256.

[15]

Orlov D., Ralston K.D., Birbilis N., Estrin Y. Enhanced corrosion resistance of Mg alloy ZK60 after processing by integrated extrusion and equal channel angular pressing. Acta Mater., 2011, 59(15): 6176.

[16]

Jiang J.H., Ma A.B., Saito N., Shen Z.X., Song D., Lu F.M., Nishida Y., Yang D.H., Lin P.H. Improving corrosion resistance of RE-containing magnesium alloy ZE41A through ECAP. J. Rare Earths, 2009, 27(5): 848.

[17]

Mostaed E., Hashempour M., Fabrizi A., Dellasega D., Bestetti M., Bonollo F., Vedani M. Microstructure, texture evolution, mechanical properties and corrosion behavior of ECAP processed ZK60 magnesium alloy for biodegradable applications. J. Mech. Behav. Biomed. Mater., 2014, 37, 307.

[18]

op’t Hoog C., Birbilis N., Estrin Y. Corrosion of pure Mg as a function of grain size and processing route. Adv. Eng. Mater., 2008, 10(6): 579.

[19]

Song G., Song S. A possible biodegradable magnesium implant material. Adv. Eng. Mater., 2007, 9(4): 298.

[20]

Gurappa I. Characterization of different materials for corrosion resistance under simulated body fluid conditions. Mater. Charact., 2002, 49(1): 73.

[21]

Song G., Atrens A. Understanding magnesium corrosion: a framework for improved alloy performance. Adv. Eng. Mater., 2003, 5(12): 837.

[22]

Masoudpanah S.M., Mahmudi R. The microstructure, tensile, and shear deformation behavior of an AZ31 magnesium alloy after extrusion and equal channel angular pressing. Mater. Des., 2010, 31(7): 3512.

[23]

Liu M., Qiu D., Zhao M.C., Song G.L., Atrens A. The effect of crystallographic orientation on the active corrosion of pure magnesium. Scripta Mater., 2008, 58(5): 421.

[24]

Song D., Ma A.B., Jiang J.H., Lin P.H., Yang D.H., Fan J.F. Corrosion behavior of equal-channel-angular-pressed pure magnesium in NaCl aqueous solution. Corros. Sci., 2010, 52(2): 481.

[25]

Xin Y.C., Liu C.L., Zhang X.M., Tang G.Y., Tian X.B., Chu P.K. Corrosion behavior of biomedical AZ91 magnesium alloy in simulated body fluids. J Mater Res., 2007, 22(7): 2004.

[26]

Argade G.R., Panigrahi S.K., Mishra R.S. Effects of grain size on the corrosion resistance of wrought magnesium alloys containing neodymium. Corros. Sci., 2012, 58, 145.

AI Summary AI Mindmap
PDF

136

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/