Effect of solution treatment on the martensitic transformation behavior of a Ni43Co7Mn39Sn11 polycrystalline alloy

Zhi-gang Wu , Hui-ying Li

International Journal of Minerals, Metallurgy, and Materials ›› 2015, Vol. 22 ›› Issue (6) : 620 -626.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2015, Vol. 22 ›› Issue (6) : 620 -626. DOI: 10.1007/s12613-015-1115-x
Article

Effect of solution treatment on the martensitic transformation behavior of a Ni43Co7Mn39Sn11 polycrystalline alloy

Author information +
History +
PDF

Abstract

The effect of solution treatment on the martensitic transformation behavior of a Ni43Co7Mn39Sn11 polycrystalline alloy fabricated by an arc melting method was investigated by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and differential scanning calorimetry (DSC). The examination indicates the presence of severe chemical segregation in the dendritic as-cast structure because of solidification. This chemical segregation completely impedes the intrinsic martensitic transformation. Annealing at 1223 K for 24 h is identified as the threshold annealing condition to eliminate the microstructural segregation and begin the martensitic transformation, as indicated by a broad and obscure feature. Annealing at 1273 K for 24–48 h is found to be effective at promoting notably the martensitic transformation, but the martensitic transformation exhibits a multiple-step feature. Complete homogeneity is achieved by annealing at 1273 K for 72 h, which produces a sharp, single-step martensitic transformation. The microstructural evolution and the valence electron concentrations of alloys (e/a ratio) are evaluated, which are reflective of the degree of compositional homogeneity of alloys, confirming that high annealing temperature and long holding time are vital to reveal the intrinsic martensitic behavior of this alloy. The adequately homogenized alloy displays a martensitic transformation at 292 K and an enthalpy of 11.2 J/g.

Keywords

shape memory alloys / annealing / martensitic transformations / homogeneity

Cite this article

Download citation ▾
Zhi-gang Wu, Hui-ying Li. Effect of solution treatment on the martensitic transformation behavior of a Ni43Co7Mn39Sn11 polycrystalline alloy. International Journal of Minerals, Metallurgy, and Materials, 2015, 22(6): 620-626 DOI:10.1007/s12613-015-1115-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ullakko K., Huang J.K., Kantner C., O’Handley R.C., Kokorin V.V. Large magnetic-field-induced strains in Ni2MnGa single crystals. Appl. Phys. Lett, 1996, 69, 1966.

[2]

Murray S.J., Marioni M., Allen S.M., O’Handley R.C., Lograsso T.A. 6% magnetic-field-induced strain by twin-boundary motion in ferromagnetic Ni–Mn–Ga. Appl. Phys. Lett, 2000, 77, 886.

[3]

Sozinov A., Likhachev A.A., Lanska N., Ullakko K. Giant magnetic-field-induced strain in NiMnGa seven-layered martensitic phase. Appl. Phys. Lett, 2002, 80, 1746.

[4]

Sutou Y., Imano Y., Koeda N., Omori T., Kainuma R., Ishida K., Oikawa K. Magnetic and martensitic transformations of NiMnX (X = In, Sn, Sb) ferromagnetic shape memory alloys. Appl. Phys. Lett, 2004, 85, 4358.

[5]

Yu S.Y., Ma L., Liu G.D., Liu Z.H., Chen J.L., Cao Z.X., Wu G.H., Zhang B., Zhang X.X. Magnetic field-induced martensitic transformation and large magnetoresistance in NiCoMnSb alloys. Appl. Phys. Lett, 2007, 90, 242501.

[6]

Umetsu R.Y., Ito W., Ito K., Koyama K., Fujita A., Oikawa K., Kanomata T., Kainuma R., Ishida K. Anomaly in entropy change between parent and martensite phases in the Ni50Mn34In16 Heusler alloy. Scripta Mater, 2009, 60(1): 25.

[7]

Schlagel D.L., Yuhasz W.M., Dennis K.W., McCallum R.W., Lograsso T.A. Temperature dependence of the field-induced phase transformation in Ni50Mn37Sn13. Scripta Mater, 2008, 59(10): 1083.

[8]

Kainuma R., Imano Y., Ito W., Sutou Y., Morito H., Okamoto S., Kitakami O., Oikawa K., Fujita A., Kanomata T., Ishida K. Magnetic-field-induced shape recovery by reverse phase transformation. Nature, 2006, 439, 957.

[9]

Kainuma R., Imano Y., Ito W., Morito H., Sutou Y., Oikawa K., Fujita A., Ishida K., Okamoto S., Kitakami O., Kanomata T. Metamagnetic shape memory effect in a Heusler-type Ni43Co7Mn39Sn11 polycrystalline alloy. Appl. Phys. Lett, 2006, 88, 192513.

[10]

Wu Z.G., Liu Z.H., Yang H., Liu Y.N., Wu G.H. Metamagnetic phase transformation in Mn50Ni37In10Co3 polycrystalline alloy. Appl. Phys. Lett, 2011, 98, 061904.

[11]

Das R., Perumal A., Srinivasan A. Estimation of entropy change at the first order martensitic transition in Ni–Mn–X based ferromagnetic shape memory alloys. Phys. B, 2014, 448, 327.

[12]

Liu J., Gottschall T., Skokov K.P., Moore J.D., Gutfleisch O. Giant magnetocaloric effect driven by structural transitions. Nat. Mater, 2012, 11, 620.

[13]

Barman R., Singh S.K., Kaur D. Enhanced exchange bias in magnetron-sputtered Ni–Mn–Sb–Al ferromagnetic shape memory alloy thin films. Curr. Appl. Phys, 2014, 14(12): 1755.

[14]

Liu C., Gao Z.Y., An X., Saunders M., Yang H., Wang H.B., Gao L.X., Cai W. Microstructure and magnetic properties of Ni-rich Ni54Mn25.7Ga20.3 ferromagnetic shape memory alloy thin film. J. Magn. Magn, 2008, 320(6): 1078.

[15]

Krenke T., Acet M., Wassermann E.F., Moya X., Mañosa L., Planes A. Martensitic transitions and the nature of ferromagnetism in the austenitic and martensitic states of Ni–Mn–Sn alloys. Phys. Rev. B, 2005, 72, 014412.

[16]

Krenke T., Moya X., Aksoy S., Acet M., Entel P., Mañosa L., Planes A., Elerman Y., Yücel A., Wassermann E.F. Electronic aspects of the martensitic transition in Ni–Mn based Heusler alloys. J. Magn. Magn. Mater, 2007, 310(2): 2788.

[17]

Cong D.Y., Roth S., Schultz L. Magnetic properties and structural transformations in Ni–Co–Mn–Sn multifunctional alloys. Acta Mater, 2012, 60, 5335.

[18]

Krenke T., Acet M., Wassermann E. F., Moya X., Manosa L., Planes A. Ferromagnetism in the austenitic and martensitic states of Ni-Mn-In alloys. Phys. Rev. B, 2006, 73, 174413.

[19]

Schlagel D.L., McCallum R.W., Lograsso T.A. Influence of solidification microstructure on the magnetic properties of Ni–Mn–Sn Heusler alloys. J. Alloys Compd, 2008, 463(1-2): 38.

[20]

J. Magn. Magn. Mater, 2007, 316(2)

[21]

Pasquale M., Sasso C.P., Giudici L., Lograsso T., Schlagel D. Field-driven structural phase transition and sign-switching magnetocaloric effect in Ni–Mn–Sn. Appl. Phys. Lett, 2007, 91(3): 131904.

[22]

Chatterjee S., Giri S., Majumdar S., De S.K. Magnetic after-effect in Ni–Mn–Sb Heusler alloy. J. Magn. Magn. Mater, 2008, 320(5): 617.

AI Summary AI Mindmap
PDF

111

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/