Reduction of chromium oxides in stainless steel dust

Yan-ling Zhang , Wen-ming Guo , Xin-lei Jia

International Journal of Minerals, Metallurgy, and Materials ›› 2015, Vol. 22 ›› Issue (6) : 573 -581.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2015, Vol. 22 ›› Issue (6) : 573 -581. DOI: 10.1007/s12613-015-1109-8
Article

Reduction of chromium oxides in stainless steel dust

Author information +
History +
PDF

Abstract

The recovery of metal oxides from stainless steel dust using C (graphite), SiFe, and Al as reductants was investigated under various conditions. The apparent distribution ratio of Cr (LCr m/s) in the recovered metal and residual slag phases was defined as the major performance metric. The results show that the recovery ratio of metals increases as the ratio of CaO:SiO2 by mass in the residual slag increases to 1.17. The residual content of metals in the slag decreases as the Al2O3 content of the slag is increased from approximately 8wt% to 10wt%. The recovery ratio of Cr increases with increasing LCr m/s, and a linear relationship between LCr m/s and the activity coefficient ratio of CrO in the slag and the recovered metal phase is observed. The combination of C and SiFe or Al as the reducing agents reveals that Si is the more effective coreductant.

Keywords

stainless steel dust / chromium oxides / recovery / apparent distribution ratio / activity coefficient

Cite this article

Download citation ▾
Yan-ling Zhang, Wen-ming Guo, Xin-lei Jia. Reduction of chromium oxides in stainless steel dust. International Journal of Minerals, Metallurgy, and Materials, 2015, 22(6): 573-581 DOI:10.1007/s12613-015-1109-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wei F.R., Zhang Y.L., Wei W.J., Yang X.G. Chemical composition of dust from stainless steel smelting and existing forms of Cr and Ni. Chin. J. Process Eng, 2011, 11(5): 786.

[2]

Mori T., Yang J., Kuwabara M. Mechanism of carbothermic reduction of chromium oxide. ISIJ Int, 2007, 47(10): 1387.

[3]

Peng B., Song H.C., Wang J., Chai L.Y., Wang Y.Y., Min X.B. Reduction process of Cr2O3/carbon pellets. J. Cent. South Univ. Technol, 2005, 36(4): 571.

[4]

Shibata E., Egawa S., Nakamura T. Reduction behavior of chromium oxide in molten slag using aluminum, ferrosilicon and graphite. ISIJ Int, 2002, 42(6): 609.

[5]

Cintho O.M., Lazzari C.P.D., Capocchi J.D.T. Kinetics of the non-isothermal reduction of Cr2O3 with aluminum. ISIJ Int, 2004, 44(5): 781.

[6]

Fruehan R.J. Rate of reduction of Cr2O3 by carbon and carbon dissolved in liquid iron alloys. Metall. Trans. B, 1977, 8(2): 429.

[7]

Nakasuga T., Sun H.P., Nakashima K., Mori K. Reduction rate of Cr2O3 in a solid powder state and in CaO–SiO2–Al2O3–CaF2 slags by Fe-C-Si melts. ISIJ Int, 2001, 41(9): 937.

[8]

Park J.H., Min D.J., Rhee C.H. Activities of chromium in molten Fe–Cr–C Alloy. ISIJ Int, 1998, 38(12): 1287.

[9]

Azad A.M., Sreedharan O.M., Gnanamoorthy J.B. Direct measurement of thermodynamic activities of metals in an AISI 304 stainless steel by calcium fluoride EMF technique. J. Nucl. Mater, 1988, 151(3): 301.

[10]

Pretorius E.B., Muan A. Activity-composition relations of chromium oxide in silicate melts at 1500°C under strongly reducing conditions. J. Am. Ceram. Soc, 1992, 75(6): 1364.

[11]

Xiao Y., Holappa L., Reuter M.A. Oxidation state and activities of chromium oxides in CaO–SiO2–CrOx slag system. Metall. Mater. Trans. B, 2002, 33(4): 595.

[12]

Teng L., Seetharaman S., Nzotta M., Dong P., Ge H., Wang L., Wang H., Chychko A. Retention, recovery and recycling of metal values from high alloyed steel slags. Arch. Metall. Mater, 2010, 55(4): 1097.

[13]

Wang L.J., Seetharaman S. Experimental studies on the oxidation states of chromium oxides in slag systems. Metall. Mater. Trans. B, 2010, 41(5): 946.

[14]

Nakasuga T., Nakashima K., Mori K. Recovery rate of chromium from stainless slag by iron melts. ISIJ Int, 2004, 44(4): 665.

[15]

Miyamoto K., Kato K., Yuki T. Effect of slag properties on reduction rate of chromium oxide in Cr2O3 containing slag by carbon in steel. Tetsu-to-Hagané, 2002, 88(12): 838.

[16]

Liu Y. Analysis on the Carbothermal Reduction Products of Fe–Cr–O/Fe–Cr–Ni–O System [Dissertation], 2014 53.

[17]

Dong P.L., Wang X.D., Seetharaman S. Thermodynamic activity of chromium oxide in CaO–SiO2–MgO–Al2O3–CrOx melts. Steel Res. Int, 2009, 80(3): 202.

[18]

Redlich O., Kister A.T. Algebraic representation of thermodynamic properties and the classification of solutions. Ind. Eng. Chem, 1948, 40(2): 345.

[19]

Andersson J.O. A thermodynamic evaluation of the Fe–Cr–C system. Metall. Trans. A, 1988, 19(3): 627.

[20]

Hillert M., Qiu C.A. A thermodynamic assessment of the Fe–Cr–Ni–C system. Metall. Trans. A, 1991, 22(10): 2187.

[21]

Kumar K.C.H., Raghavan V. A thermodynamic analysis of the Al–C–Fe system. J. Phase Equilib, 1991, 12(3): 275.

[22]

Zhou S.H., Wang Y., Chen L.Q., Liu Z.K., Napolitano R.E. Solution-based thermodynamic modeling of the Ni–Al–Mo system using first-principles calculations. Calphad, 2014, 46, 124.

[23]

Du Y., Schuster J.C. Experimental investigations and thermodynamic descriptions of the Ni–Si and C–Ni–Si systems. Metall. Mater. Trans. A, 1999, 30(9): 2409.

[24]

Hino M., Nagasaka T., Washizu T. Phase diagram of Fe–Cu–Si ternary system above 1523 K. J. Phase Equilib, 1999, 20(3): 179.

[25]

Miettinen J. Thermodynamic reassessment of Fe–Cr–Ni system with emphasis on the iron-rich corner. Calphad, 1999, 23(2): 231.

[26]

Jacobs M.H.G., Schmid-Fetzer R., Markus T., Motalov V., Borchardt G., Spitzer K.H. Thermodynamics and diffusion in ternary Fe–Al–Cr alloys: Part I. Thermodynamic modeling. Intermetallics, 2008, 16(8): 995.

AI Summary AI Mindmap
PDF

117

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/