Reduction mechanism of high-chromium vanadium–titanium magnetite pellets by H2–CO–CO2 gas mixtures

Jue Tang , Man-sheng Chu , Feng Li , Ya-ting Tang , Zheng-gen Liu , Xiang-xin Xue

International Journal of Minerals, Metallurgy, and Materials ›› 2015, Vol. 22 ›› Issue (6) : 562 -572.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2015, Vol. 22 ›› Issue (6) : 562 -572. DOI: 10.1007/s12613-015-1108-9
Article

Reduction mechanism of high-chromium vanadium–titanium magnetite pellets by H2–CO–CO2 gas mixtures

Author information +
History +
PDF

Abstract

The reduction of high-chromium vanadium–titanium magnetite as a typical titanomagnetite containing 0.95wt% V2O5 and 0.61wt% Cr2O3 by H2–CO–CO2 gas mixtures was investigated from 1223 to 1373 K. Both the reduction degree and reduction rate increase with increasing temperature and increasing hydrogen content. At a temperature of 1373 K, an H2/CO ratio of 5/2 by volume, and a reduction time of 40 min, the degree of reduction reaches 95%. The phase transformation during reduction is hypothesized to proceed as follows: Fe2O3 → Fe3O4 → FeO → Fe; Fe9TiO15 + Fe2Ti3O9 → Fe2.75Ti0.25O4 → FeTiO3 → TiO2; (Cr0.15V0.85)2O3 → Fe2VO4; and Cr1.3Fe0.7O3 → FeCr2O4. The reduction is controlled by the mixed internal diffusion and interfacial reaction at the initial stage; however, the interfacial reaction is dominant. As the reduction proceeds, the internal diffusion becomes the controlling step.

Keywords

magnetite / ore reduction / phase transformation / reaction mechanism / kinetics

Cite this article

Download citation ▾
Jue Tang, Man-sheng Chu, Feng Li, Ya-ting Tang, Zheng-gen Liu, Xiang-xin Xue. Reduction mechanism of high-chromium vanadium–titanium magnetite pellets by H2–CO–CO2 gas mixtures. International Journal of Minerals, Metallurgy, and Materials, 2015, 22(6): 562-572 DOI:10.1007/s12613-015-1108-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Tang J., Zhang Y., Chu M.S., Xue X.X. Preparation of oxidized pellets with high chromium vanadium-titanium magnetite. J. Northeast. Univ. Nat. Sci, 2013, 34(4): 545.

[2]

Tang J., Zhang Y., Chu M.S., Xue X.X. Effect of the increasing percent of high chromium vanadium-titanium magnetite on quality of oxidized pellets. J. Northeast. Univ. Nat. Sci, 2013, 34(7): 956.

[3]

Zhang L., Zhang L.N., Wang M.Y., Li G.Q., Sui Z.T. Recovery of titanium compounds from molten Ti-bearing blast furnace slag under the dynamic oxidation condition. Miner. Eng, 2007, 20(7): 684.

[4]

Sun H.Y., Wang J.S., Han Y.H., She X.F., Xue Q.G. Reduction mechanism of titanomagnetite concentrate by hydrogen. Int. J. Miner. Process, 2013, 125(10): 122.

[5]

Chen S.Y., Chu M.S. Metalizing reduction and magnetic separation of vanadium titano-magnetite based on hot briquetting. Int. J. Miner. Metall. Mater, 2014, 21(3): 225.

[6]

Sun H.Y., Wang J.S., Dong X.J., Xue Q.J. A literature review of titanium slag metallurgical processes. Metal. Int, 2012, 17(7): 49.

[7]

Park E., Ostrovski O. Reduction of titania-ferrous ore by carbon monoxide. ISIJ Int, 2003, 43(9): 1316.

[8]

Merk R., Pickles C.A. Reduction of ilmenite by carbon monoxide. Can. Metall. Q, 1988, 27(3): 179.

[9]

Zhang G.H., Chou G.C., Zhao H.L. Reduction kinetics of FeTiO3 powder by hydrogen. ISIJ Int, 2012, 52(11): 1986.

[10]

Fu W.G., Wen Y.C., Xie H.E. Development of intensified technologies of vanadium-bearing titanomagnetite smelting. J. Iron Steel Res. Int, 2011, 18(4): 7.

[11]

Park E., Lee S.B., Ostrovski O., Min D.J., Rhee C.H. Reduction of the mixture of titanomagnetite ironsand and hematite iron ore fines by carbon monoxide. ISIJ Int, 2004, 44(1): 214.

[12]

Park E., Ostrovski O. Reduction of titania-ferrous ore by hydrogen. ISIJ Int, 2004, 44(6): 999.

[13]

Si X.G., Lu X.G., Li C.W., Li C.H., Ding W.Z. Phase transformation and reduction kinetics during the hydrogen reduction of ilmenite concentrate. Int. J. Miner. Metall. Mater, 2012, 19(5): 384.

[14]

Zhao Y., Shadman F. Reduction of ilmenite with hydrogen. Ind. Eng. Chem. Res, 1991, 30(9): 2080.

[15]

Wang Y.M., Yuan Z.F. Reductive kinetics of the reaction between a natural ilmenite and carbon. Int. J. Miner. Process, 2006, 81(3): 133.

[16]

Ono-Nakazato H., Yonezawa T., Usui T. Effect of water- gas shift reaction on the reduction of iron oxide powder packed bed with H2-CO mixtures. ISIJ Int, 2003, 43(10): 1502.

[17]

Huang X.G. Theory of Ferrous Metallurgy, 3rd Ed, 2000, Beijing, The Metallurgical Industry Press

[18]

Valipour M.S., Motamed Hashemi M.Y., Saboohi Y. Mathematical modeling of the reaction in an iron ore pellet using a mixture of hydrogen, water vapor, carbon monoxide and carbon dioxide: an isothermal study. Adv. Powder Technol, 2006, 17(3): 277.

[19]

Wang Z.C., Chen S.Y., Chu M.S., Han Z.W., Xue X.X. Simulation experiment on direct reduction of oxidized pellets of vanadium and titanium-bearing iron concentrates by gas-based shaft furnace. Iron Steel Vanadium Titanium, 2012, 33(2): 34.

[20]

Sharma T. Swelling of iron ore pellets under non-isothermal condition. ISIJ Int, 1994, 34(12): 960.

[21]

Chu M.S. Iron and Steel Metallurgy Fuel and Auxiliary Materials, 2010, Beijing, Industry Press

[22]

Itoh S., Inoue O., Azakami T. Phase relations and equilibrium oxygen partial pressures in iron-titanium-oxygen system at 1373 K. Mater. Trans. JIM, 1996, 39(3): 391.

[23]

Habermann A., Winter F., Hofbauer H., Zirngast J., Schenk J.L. An experimental study on the kinetics of fluidized bed iron ore reduction. ISIJ Int, 2000, 40(10): 935.

AI Summary AI Mindmap
PDF

129

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/