Structural predictions based on the compositions of cathodic materials by first-principles calculations

Yang Li , Fang Lian , Ning Chen , Zhen-jia Hao , Kuo-chih Chou

International Journal of Minerals, Metallurgy, and Materials ›› 2015, Vol. 22 ›› Issue (5) : 524 -529.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2015, Vol. 22 ›› Issue (5) : 524 -529. DOI: 10.1007/s12613-015-1102-2
Article

Structural predictions based on the compositions of cathodic materials by first-principles calculations

Author information +
History +
PDF

Abstract

A first-principles method is applied to comparatively study the stability of lithium metal oxides with layered or spinel structures to predict the most energetically favorable structure for different compositions. The binding and reaction energies of the real or virtual layered LiMO2 and spinel LiM2O4 (M = Sc-Cu, Y-Ag, Mg-Sr, and Al-In) are calculated. The effect of element M on the structural stability, especially in the case of multiple-cation compounds, is discussed herein. The calculation results indicate that the phase stability depends on both the binding and reaction energies. The oxidation state of element M also plays a role in determining the dominant structure, i.e., layered or spinel phase. Moreover, calculation-based theoretical predictions of the phase stability of the doped materials agree with the previously reported experimental data.

Keywords

lithium-ion batteries / cathodic materials / structure / first-principles calculations / binding energy

Cite this article

Download citation ▾
Yang Li, Fang Lian, Ning Chen, Zhen-jia Hao, Kuo-chih Chou. Structural predictions based on the compositions of cathodic materials by first-principles calculations. International Journal of Minerals, Metallurgy, and Materials, 2015, 22(5): 524-529 DOI:10.1007/s12613-015-1102-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Whittingham M.S. Lithium batteries and cathode materials. Chem. Rev., 2004, 104(10): 4271.

[2]

He P., Yu H.J., Li D., Zhou H.S. Layered lithium transition metal oxide cathodes towards high energy lithium-ion batteries. J. Mater. Chem., 2012, 22, 3680.

[3]

Thackeray M.M., Wolverton C., Isaacs E.D. Electrical energy storage for transportation-approaching the limits of, and going beyond, lithium-ion batteries. Energy Environ. Sci., 2012, 5, 7854.

[4]

Ceder G., Hautier G., Jain A., Ong S.P. Recharging lithium battery research with first-principles methods. MRS Bull., 2011, 36(3): 185.

[5]

Ceder G., Aydinol M.K. The electrochemical stability of lithium–metal oxides against metal reduction. Solid State Ionics, 1998, 109(1–2): 151.

[6]

Xu B., Qian D.N., Wang Z.Y., Meng Y.S. Recent progress in cathode materials research for advanced lithium ion batteries. Mater. Sci. Eng. R, 2012, 73(5–6): 51.

[7]

Saavedra-Arias J.J., Rao C.V., Shojan J., Manivannan A., Torres L., Ishikawa Y., Katiyar R.S. A combined first-principles computational/experimental study on LiNi0.66Co0.17Mn0.17O2 as a potential layered cathode material. J. Power Sources, 2012, 211, 12.

[8]

Jain A., Hautier G., Moore C.J., Ping Ong S., Fischer C.C., Mueller T., Persson K.A., Ceder G. A high-throughput infrastructure for density functional theory calculations. Comput. Mater. Sci., 2011, 50(8): 2295.

[9]

Aydinol M.K., Kohan A.F., Ceder G. Ab initio calculation of the intercalation voltage of lithium–transition-metal oxide electrodes for rechargeable batteries. J. Power. Sources, 1997, 68(2): 664.

[10]

Benco L., Barras J.L., Atanasov M., Daul C.A., Deiss E. First-principles prediction of voltages of lithiated oxides for lithium-ion batteries. Solid State Ionics, 1998, 112(3–4): 255.

[11]

Huang Z.F., Zhang H.Z., Wang C.Z., Wang D.P., Meng X., Xing M., Chen G. First-principles investigation on extraction of lithium ion from monoclinic LiMnO2. Solid State Sci., 2009, 11(1): 271.

[12]

Van der Ven A., Ceder G. Lithium diffusion mechanisms in layered intercalation compounds. J. Power Sources, 2001, 97–98, 529.

[13]

Mishra S.K., Ceder G. Structural stability of lithium manganese oxides. Phys. Rev. B, 1999, 59(9): 6120.

[14]

Nakayama M., Nogami M. A first-principles study on phase transition induced by charge ordering of Mn3+/Mn4+ in spinel LiMn2O4. Solid State Commun., 2010, 150(29–30): 1329.

[15]

Arroyo y de Dompablo M.E., Ceder G. First-principles calculations on LixNiO2: phase stability and monoclinic distortion. J. Power Sources, 2003, 119–121, 654.

[16]

Armstrong A.R., Paterson A.J., Dupré N., Grey C.P., Bruce P.G. Structural evolution of layered LixMnyO2 combined neutron, NMR, and electrochemical study. Chem. Mater., 2007, 19(5): 1016.

[17]

Capitaine F., Gravereau P., Delmas C. A new variety of LiMnO2 with a layered structure. Solid State Ionics, 1996, 89(3–4): 197.

[18]

Reed J., Ceder G. Role of electronic structure in the susceptibility of metastable transition-metal oxide structures to transformation. Chem. Rev., 2004, 104(10): 4513.

[19]

Li N., Chen N., Li F.S., Li Y., Zhao H.L. Theoretical research on optimization ingredient regulation of BaBO3 series hypoxic materials. Sci. China Phys. Mech. Astron., 2011, 41(9): 1075.

[20]

Segall M.D., Lindan P.J.D., Probert M.J., Pickard C.J., Hasnip P.J., Clark S.J., Payne M.C. First-principles simulation: ideas, illustrations and the CASTEP code. J. Phys. Condens. Matter, 2002, 14(11): 2717.

[21]

Wang Y., Perdew J.P. Correlation hole of the spin-polarized electron gas, with exact small-wave-vector and high-density scaling. Phys. Rev. B, 1991, 44(24): 13298.

[22]

Zhou D.W., Liu J.S., Xu S.H., Peng P. First-principles investigation of the binary intermetallics in Mg-Al-Sr alloy: stability, elastic properties and electronic structure. Comput. Mater. Sci., 2014, 86, 24.

[23]

Chong X., Jiang Y., Zhou R., Feng J. First principles study the stability, mechanical and electronic properties of manganese carbides. Comput. Mater. Sci., 2014, 87, 19.

[24]

Koksbang R., Barker J., Shi H., Saïdi M.Y. Cathode materials for lithium rocking chair batteries. Solid State Ionics, 1996, 84(1–2): 1.

[25]

Shirane T., Kanno R., Kawamoto Y., Takeda Y., Takano M., Kamiyama T., Izumi F. Structure and physical properties of lithium iron oxide, LiFeO2, synthesized by ionic exchange reaction. Solid State Ionics, 1995, 79, 227.

[26]

de Picciotto L.A., Thackeray M.M. Transformation of delithiated LiVO2 to the spinel structure. Mater. Res. Bull., 1985, 20(2): 187.

[27]

Ohzuku T., Makimura Y. Layered lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for lithium-ion batteries. Chem. Lett., 2001, 30(7): 642.

[28]

Ohzuku T., Yanagawa T., Kouguchi M., Ueda A. Innovative insertion material of LiAl1/4Ni3/4O2 (R $(R\bar 3m)$ m ) for lithium-ion (shuttlecock) batteries. J. Power Sources, 1997, 68(1): 131.

[29]

Sathiyamoorthi R., Santhosh P., Shakkthivel P., Vasudevan T. LiNi0.8Co0.2−xTixO2 nanoparticles: synthesis, structure, and evaluation of electrochemical properties for lithium ion cell application. J. Solid State Electrochem., 2007, 11, 1665.

[30]

Deiss E. Spurious chemical diffusion coefficients of Li+ in electrode materials evaluated with GITT. Electrochim. Acta, 2005, 50(14): 2927.

[31]

Park M., Zhang X., Chung M., Less G.B., Sastry A.M. A review of conduction phenomena in Li-ion batteries. J. Power Sources, 2010, 195(24): 7904.

[32]

Choi Y.M., Pyun S.I. Determination of electrochemical active area of porous Li1−δCoO2 electrode using the GITT technique. Solid State Ionics, 1998, 109(1–2): 159.

[33]

Yan H.W., Huang X.J., Li H., Chen L.Q. Electrochemical study on LiCoO2 synthesized by microwave energy. Solid State Ionics, 1998, 113–115, 11.

[34]

Molenda J., Wilk P., Marzec J. Electronic and electrochemical properties of LixNi1−yCoyO2 cathode material. Solid State Ionics, 2003, 157(1–4): 115.

[35]

Julien C., Camacho-Lopez M.A., Lemal M., Ziolkiewicz S. LiCo1−yMyO2 positive electrodes for rechargeable lithium batteries: I. Aluminum doped materials. Mater. Sci. Eng. B, 2002, 95(1): 6.

[36]

Julien C.M., Amdouni A., Castro-Garcia S., Selmane M., Rangan S. LiCo1−yMyO2 positive electrodes for rechargeable lithium batteries: II. Nickel substituted materials grown by the citrate method. Mater. Sci. Eng. B, 2006, 128(1–3): 138.

[37]

Montoro L.A., Rosolen J.M. The role of structural and electronic alterations on the lithium diffusion in LixCo0.5Ni0.5O2. Electrochim. Acta, 2004, 49(19): 3243.

[38]

Zhong Y.D., Zhao X.B., Cao G.S. Characterization of solid-state synthesized pure and doped lithium nickel cobalt oxides. Mater. Sci. Eng. B, 2005, 121(3): 248.

[39]

Yang S.Y., Wang X.Y., Yang X.K., Bai Y.S., Liu Z.L., Shu H.B., Wei Q.L. Determination of the chemical diffusion coefficient of lithium ions in spherical Li[Ni0.5Mn0.3Co0.2]O2. Electrochim. Acta, 2012, 66, 88.

[40]

Shi S.J., Mai Y.J., Tang Y.Y., Gu C.D., Wang X.L., Tu J.P. Preparation and electrochemical performance of ball-like LiMn0.4Ni0.4Co0.2O2 cathode materials. Electrochim. Acta, 2012, 77, 39.

[41]

Wang G.X., Zhong S., Bradhurst D.H., Dou S.X., Liu H.K. LiAlδNi1−δO2 solid solutions as cathodic materials for rechargeable lithium batteries. Solid State Ionics, 1999, 116(3–4): 271.

AI Summary AI Mindmap
PDF

125

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/