Electrochemical impedance spectroscopy study on the corrosion of the weld zone of 3Cr steel welded joints in CO2 environments

Li-ning Xu , Jin-yang Zhu , Min-xu Lu , Lei Zhang , Wei Chang

International Journal of Minerals, Metallurgy, and Materials ›› 2015, Vol. 22 ›› Issue (5) : 500 -508.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2015, Vol. 22 ›› Issue (5) : 500 -508. DOI: 10.1007/s12613-015-1099-6
Article

Electrochemical impedance spectroscopy study on the corrosion of the weld zone of 3Cr steel welded joints in CO2 environments

Author information +
History +
PDF

Abstract

The welded joints of 3Cr pipeline steel were fabricated with commercial welding wire using the gas tungsten arc welding (GTAW) technique. Potentiodynamic polarization curves, linear polarization resistance (LPR), electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM), and energy-dispersive spectrometry (EDS) were used to investigate the corrosion resistance and the growth of a corrosion film on the weld zone (WZ). The changes in electrochemical characteristics of the film were obtained through fitting of the EIS data. The results showed that the average corrosion rate of the WZ in CO2 environments first increased, then fluctuated, and finally decreased gradually. The formation of the film on the WZ was divided into three stages: dynamic adsorption, incomplete-coverage layer formation, and integral layer formation.

Keywords

petroleum pipelines / steel corrosion / welded joints / carbon dioxide / electrochemical impedance spectroscopy

Cite this article

Download citation ▾
Li-ning Xu, Jin-yang Zhu, Min-xu Lu, Lei Zhang, Wei Chang. Electrochemical impedance spectroscopy study on the corrosion of the weld zone of 3Cr steel welded joints in CO2 environments. International Journal of Minerals, Metallurgy, and Materials, 2015, 22(5): 500-508 DOI:10.1007/s12613-015-1099-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

López D.A., Simison S.N., de Sánchez S.R. The influence of steel microstructure on CO2 corrosion. EIS studies on the inhibition efficiency of benzimidazole. Electrochimi. Acta, 2003, 48(7): 845.

[2]

Kermani B., Gonzales J.C., Turconi G.L., Perez T.E., Morales C. In-field corrosion performance of 3%Cr steels in sweet and sour downhole production and water injection. Corrosion, 2004

[3]

Scoppio L., Lo Piccolo E., De Cristofaro N., Takabe H., Ueda M., Buene A.M., Nice P.I. Corrosion problem and its countermeasure of 3Cr production tubing in NaCl completion brine on the Statfjord field. Corrosion, 2006

[4]

Zhang Z.H., Huang Z.Y., Sun Y.N., Cai H.Y., Guo J.B. Development of 3Cr series oil pipes with good CO2 and H2S corrosion resistant properties. Baosteel Technol., 2006, 3, 5.

[5]

Nose K., ASahi H., Nice P.I., Martin J.W. Corrosion properties of 3% Cr steels in oil and gas environments. Corrosion, 2001

[6]

Hu L.H., Zhang L., Xu L.N., Lu M.X. CO2 corrosion behavior of 3Cr low-alloy pipeline steel and weld joints. J. Univ. Sci. Technol. Beijing, 2010, 32(3): 345.

[7]

Guo S.Q., Xu L.N., Zhang L., Chang W., Lu M.X. Corrosion of alloy steels containing 2% chromium in CO2 environments. Corros. Sci., 2012, 63, 246.

[8]

Zhang J., Wang Z.L., Wang Z.M., Han X. Chemical analysis of the initial corrosion layer on pipeline steels in simulated CO2 enhanced oil recovery brines. Corros. Sci., 2012, 65, 397.

[9]

Chen C.F., Lu M.X., Sun D.B., Zhang Z.H., Chang W. Effect of chromium on the pitting resistance of oil tube steel in a carbon dioxide corrosion system. Corrosion, 2005, 61(6): 594.

[10]

Wang W., Yan W., Zhu L., Hu P., Shan Y.Y., Yang K. Relation among rolling parameters, microstructures and mechanical properties in an acicular ferrite pipeline steel. Mater. Des., 2009, 30(9): 3436.

[11]

Cao C.N., Zhang J.Q. Introduction to Electrochemical Impedance Spectroscopy, 2002 4 Beijing, Science Press

[12]

Bockris J.O.M., Drazic D. The kinetics of deposition and dissolution of iron: effect of alloying impurities. Electrochim. Acta, 1962, 7(3): 293.

[13]

Nešic S. Key issues related to modelling of internal corrosion of oil and gas pipelines: a review. Corros. Sci., 2007, 49(12): 4308.

[14]

Zhang G.A., Cheng Y.F. On the fundamentals of electrochemical corrosion of X65 steel in CO2-containing formation water in the presence of acetic acid in petroleum production. Corros. Sci., 2009, 51(1): 87.

[15]

Videm K., Kvarekvaal J., Pérez T., Fitzsimons G. Surface effects on the electrochemistry of iron and carbon steel electrodes in aqueous CO2 solutions. Corrosion, 1996

[16]

Al-Hassan S., Mishra B., Olson D.L., Salama M.M. Effect of microstructure on corrosion of steels in aqueous solutions containing carbon dioxide. Corrosion, 1998, 54(6): 480.

[17]

Gulbrandsen E., Nesic S., Stangeland A., Burchardt T., Sundfar B., Hesjevik S.M., Skjerve S. Effect of precorrosion on the performance of inhibitors for CO2 corrosion of carbon steel. Corrosion, 1998

[18]

Farelas F., Galicia M., Brown B., Nesic S., Castaneda H. Evolution of dissolution processes at the interface of carbon steel corroding in a CO2 environment studied by EIS. Corros. Sci., 2010, 52(2): 509.

[19]

Li P., Tan T.C., Lee J.Y. Impedance spectra of the anodic dissolution of mild steel in sulfuric acid. Corros. Sci., 1996, 38(11): 1935.

[20]

Guo S.Q., Xu L.N., Chang W., Mi Y.R., Lu M.X. Experimental study of CO2 corrosion of 3Cr pipe line steel. Acta Metall. Sin., 2011, 47(8): 1067.

[21]

Hernández-Espejel A., Domínguez-Crespo M.A., Cabrera-Sierra R.C., Rodríguez-Meneses C., Arce-Estrada E.M. Investigations of corrosion films formed on API-X52 pipeline steel in acid sour media. Corros. Sci., 2010, 52(7): 2258.

AI Summary AI Mindmap
PDF

122

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/