Thermodynamics and kinetics of extracting zinc from zinc oxide ore by the ammonium sulfate roasting method

Yi Sun , Xiao-yi Shen , Yu-chun Zhai

International Journal of Minerals, Metallurgy, and Materials ›› 2015, Vol. 22 ›› Issue (5) : 467 -475.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2015, Vol. 22 ›› Issue (5) : 467 -475. DOI: 10.1007/s12613-015-1095-x
Article

Thermodynamics and kinetics of extracting zinc from zinc oxide ore by the ammonium sulfate roasting method

Author information +
History +
PDF

Abstract

Thermodynamic analyses and kinetic studies were performed on zinc oxide ore treatment by (NH4)2SO4 roasting technology. The results show that it is theoretically feasible to realize a roasting reaction between the zinc oxide ore and (NH4)2SO4 in a temperature range of 573–723 K. The effects of reaction temperature and particle size on the extraction rate of zinc were also examined. It is found that a surface chemical reaction is the rate-controlling step in roasting kinetics. The calculated activation energy of this process is about 45.57 kJ/mol, and the kinetic model can be expressed as follows: 1 − (1 − α)1/3 = 30.85 exp(−45.57/RTt. An extraction ratio of zinc as high as 92% could be achieved under the optimum conditions.

Keywords

zinc metallurgy / extraction / ammonium sulfate / ore roasting / thermodynamics / kinetics

Cite this article

Download citation ▾
Yi Sun, Xiao-yi Shen, Yu-chun Zhai. Thermodynamics and kinetics of extracting zinc from zinc oxide ore by the ammonium sulfate roasting method. International Journal of Minerals, Metallurgy, and Materials, 2015, 22(5): 467-475 DOI:10.1007/s12613-015-1095-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bodas M.G. Hydrometallurgical treatment of zinc silicate ore from Thailand. Hydrometallurgy, 1996, 40(1–2): 37.

[2]

Babu M.N., Sahu K.K., Pandey B.D. Zinc recovery from sphalerite concentrate by direct oxidative leaching with ammonium, sodium and potassium persulphates. Hydrometallurgy, 2002, 64(2): 119.

[3]

Safari V., Arzpeyma G., Rashchi F., Mostoufi N. A shrinking particle-shrinking core model for leaching of a zinc ore containing silica. Int. J. Miner. Process., 2009, 93(1): 79.

[4]

Boni M. The geology and mineralogy of nonsulphide zinc ore deposits. Lead & Zinc, 2005 1299.

[5]

Espiari S., Rashchi F., Sadrnezhaad S.K. Hydrometallurgical treatment of tailings with high zinc content. Hydrometallurgy, 2006, 82(1–2): 54.

[6]

Navidi Kashani A.H., Rashchi F. Separation of oxidized zinc minerals from tailings: Influence of flotation reagents. Miner. Eng., 2008, 21(12–14): 967.

[7]

Ghosh M.K., Das R.P., Biswas A.K. Oxidative ammonia leaching of sphalerite: Part I. Noncatalytic kinetics. Int. J. Miner. Process., 2002, 66(1–4): 241.

[8]

Frenay J. Leaching of oxidized zinc ores in various media. Hydrometallurgy, 1985, 15(2): 243.

[9]

Jha M.K., Kumar V., Singh R.J. Review of hydrometallurgical recovery of zinc from industrial wastes. Resour. Conserv. Recycl., 2001, 33(1): 1.

[10]

Norgate T., Jahanshahi S. Low grade ores: smelt, leach or concentrate?. Miner. Eng., 2010, 23(2): 65.

[11]

Lin Z.Y., Hua Y.X. Technology and mechanism study on leaching high silicon zinc oxide ore with sulfuric acid. Nonferrous Met, 2003, 5, 9.

[12]

Dou A.C., Yang T.Z., Yang J.X., Wu J.H., Wang A. Leaching of low grade zinc oxide ores in Ida2−–H2O system. Trans. Nonferrous Met. Soc. China, 2011, 21(11): 2548.

[13]

Feng L.Y., Yang X.W., Shen Q.F., Xu M.L., Jin B.J. Pelletizing and alkaline leaching of powdery low grade zinc oxide ores. Hydrometallurgy, 2007, 89(3–4): 305.

[14]

Qin W.Q., Li W.Z., Lan Z.Y., Qiu G.Z. Simulated small-scale pilot plant heap leaching of low-grade oxide zinc ore with integrated selective extraction of zinc. Miner. Eng., 2007, 20(7): 694.

[15]

He S.M., Wang J.K., Yan J.F. Pressure leaching of synthetic zinc silicate in sulfuric acid medium. Hydrometallurgy, 2011, 108(3–4): 171.

[16]

Moradi S., Monhemius A.J. Mixed sulphide–oxide lead and zinc ores: problems and solutions. Miner. Eng., 2011, 24(10): 1062.

[17]

Xu H.S., Wei C., Li C.X., Fan G., Deng Z.G., Zhou M.J., Qiu S. Leaching of a complex sulfidic, silicate-containing zinc ore in sulfuric acid solution under oxygen pressure. Sep. Purif. Technol., 2012, 85, 206.

[18]

Ju S.H., Tang M.T., Yang S.H., Li Y.N. Dissolution kinetics of smithsonite ore in ammonium chloride solution. Hydrometallurgy, 2005, 80(1–2): 67.

[19]

Wang R.X., Tang M.T., Yang S.H., Zhang W.H., Tang C.B., He J., Yang J.G. Leaching kinetics of low grade zinc oxide ore in NH3–NH4Cl–H2O system. J. Cent. South Univ. Technol., 2008, 15, 679.

[20]

Ding Z.Y., Yin Z.L., Hu H.P., Chen Q.Y. Dissolution kinetics of zinc silicate (hemimorphite) in ammoniacal solution. Hydrometallurgy, 2010, 104(2): 201.

[21]

Yin Z.L., Ding Z.Y., Hu H.P., Liu K., Chen Q.Y. Dissolution of zinc silicate (hemimorphite) with ammonia–ammonium chloride solution. Hydrometallurgy, 2010, 103(1–4): 215.

[22]

Chen A.L., Zhao Z.W., Jia X.J., Long S., Huo G.S., Chen X.Y. Alkaline leaching Zn and its concomitant metals from refractory hemimorphite zinc oxide ore. Hydrometallurgy, 2009, 97(3–4): 228.

[23]

Santos F.M.F., Pina P.S., Porcaro R., Oliveira V.A., Silva C.A., Leão V.A. The kinetics of zinc silicate leaching in sodium hydroxide. Hydrometallurgy, 2010, 102(1–4): 43.

[24]

Liu Q., Zhao Y.C., Zhao G.D. Production of zinc and lead concentrates from lean oxidized zinc ores by alkaline leaching followed by two-step precipitation using sulfides. Hydrometallurgy, 2011, 110(1–4): 79.

[25]

Yang T.Z., Dou A.C., Lei C.M., Ren J., Liu Z.Z. Ligand selection for complex-leaching valuable metals in hydrometallurgy. Trans. Nonferrous Met. Soc. China, 2010, 20(6): 1148.

[26]

Chen B., Shen X.Y., Gu H.M., Sun Y., Li D.G., Zhai Y.C., Ma P.H. Extraction of ZnO from zinc oxide ore by alkali roasting method. CIESC J., 2012, 63(2): 658.

[27]

Shen X.Y., Sun Y., Song J.Q., Zhai Y.C. Low grade zinc ore by low temperature roasting using (NH4)2SO4. Chin. J. Mater. Res., 2012, 26(4): 396.

[28]

Ye D.L., Hu J.H. Practical Handbook of Thermodynamic Data for Inorganic Compounds, 2nd Ed., 2002, Beijing, Metallurgical Industry Press, 1.

[29]

Tian Y.W., Zhai X.J., Liu K.R. A Concise Course of Metallurgical Physical Chemistry, 2011, Beijing, Chemical Industry Press, 1.

[30]

Dean J.A., Wei J.F. Lange’s Handbook of Chemistry, 2003, Beijing, Science Press

[31]

Li H.G. Metallurgical Principles, 2005, Beijing, Science Press, 291.

[32]

Li H.G. Hydrometallurgy, 2002, Changsha, Central South University Press, 69.

[33]

Hua Y.X. Introduction of Metallurgical Process Kinetics, 2004, Beijing, Metallurgical Industry Press, 191.

[34]

Shon H.Y., Wadsworth M.E. Rate Process of Extractive Metallurgy, 1979, New York, Springer

AI Summary AI Mindmap
PDF

182

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/